OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 15 — Jul. 23, 2007
  • pp: 9631–9644

Optical forces in coupled plasmonic nanosystems: Near field and far field interaction regimes

Élodie Lamothe, Gaëtan Lévêque, and Olivier J. F. Martin  »View Author Affiliations


Optics Express, Vol. 15, Issue 15, pp. 9631-9644 (2007)
http://dx.doi.org/10.1364/OE.15.009631


View Full Text Article

Enhanced HTML    Acrobat PDF (239 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the forces generated by an electromagnetic field on two coupled gold nanowires at the vicinity of the plasmon resonance wavelength. Two different regimes are observed, depending on the separation distance d between the wires. In the near field coupling regime, both attractive and repulsive forces can be generated, depending on d and the illumination wavelength. Furthermore, at the plasmon resonance, it is possible to create forces 100 times larger than the radiation pressure. In the far field coupling regime, both particles are pushed by the incident field. However, the force amplitude applied on each wire is modulated as a function of d, even for large separations. This indicates that the system behaves like a cavity and pseudo Fabry-Perot modes can be excited between the particles. The interaction of these modes with the plasmon resonances of the nanowires, determines the forces on the particles. Around the plasmon resonance wavelength, when the cavity is tuned to the incident light, forces are close to the average value corresponding to the radiation pressure of the incident field. On the other hand, when the cavity is detuned, the particles are retained or pushed anti-symmetrically. We finally study the forces applied on these nanowires in the centre of mass reference frame (CMRF) for the far field coupling regime. For any separation distance d we observe equilibrium positions in the CMRF for at least one illumination wavelength. The stability of these equilibrium positions is discussed in detail.

© 2007 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(240.6680) Optics at surfaces : Surface plasmons
(290.0290) Scattering : Scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 18, 2007
Revised Manuscript: July 16, 2007
Manuscript Accepted: July 16, 2007
Published: July 18, 2007

Virtual Issues
Vol. 2, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Élodie Lamothe, Gaëtan Lévêque, and Olivier J. F. Martin, "Optical forces in coupled plasmonic nanosystems: Near field and far field interaction regimes," Opt. Express 15, 9631-9644 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9631


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  2. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001). [CrossRef]
  3. G. Lévêque and O. J. F. Martin, "Optical interactions in a plasmonic particle coupled to a metallic film," Opt. Express 14, 9971-9981 (2006). [CrossRef] [PubMed]
  4. A. Ashkin, " Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  5. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  6. A. Ashkin, "Trapping of atoms by resonant radiation pressure," Phys. Rev. Lett. 40, 729-732 (1978). [CrossRef]
  7. M. M. Burns, J. M. Fournier, and J. A. Golovchenko, "Optical binding," Phys. Rev. Lett. 63, 1233-1236 (1989). [CrossRef] [PubMed]
  8. C. Girard, A. Dereux, and O. J. F. Martin, "Theoretical analysis of light-inductive forces in scanning probe microscopy", Phys. Rev. B 49, 13872-13881 (1994). [CrossRef]
  9. P. C. Chaumet, and M. Nieto-Vesperinas, "Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate," Phys. Rev. B 61, 14119-14127 (2000). [CrossRef]
  10. P. C. Chaumet, and M. Nieto-Vesperinas, "Electromagnetic force on a metallic particle in the presence of a dielectric surface," Phys. Rev. B 62, 11185-11191 (2000). [CrossRef]
  11. M. L. Povinelli, M. Lončar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, "Evanescent-wave bonding between optical waveguides," Opt. Lett. 30, 3042-3044 (2005). [CrossRef] [PubMed]
  12. R. Gómez-Medina, and J. J. Sáenz, "Unusually strong optical interactions between particles in quasi-one-dimensional geometries," Phys. Rev. Lett. 93, 243602 (2004). [CrossRef]
  13. L. Novotny, R. X. Bian, and X. S. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett. 79, 645-648 (1997). [CrossRef]
  14. P. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Selective nanomanipulation using optical forces," Phys. Rev. B 66,195405 (2002). [CrossRef]
  15. J. R. Arias-Gonzalez, and M. Nieto-Vesperinas, "Optical forces on small particles: attractive and repulsive nature and plasmon resonance conditions," J. Opt. Soc. Am. A 20, 1201-1209 (2003). [CrossRef]
  16. K. Halterman, J. M. Elson, and S. Singh, "Plasmonic resonances and electromagnetic forces between coupled silver nanowires," Phys. Rev. B 72, 075429 (2005). [CrossRef]
  17. A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, "Enhanced optical forces between coupled resonant metal nanoparticles," Opt. Lett. 32, 1156-1158 (2007). [CrossRef] [PubMed]
  18. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370-4379 (1972) [CrossRef]
  19. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  20. M. Paulus, and O. J. F. Martin, "Green’s tensor technique for scattering in two-dimensional stratified media," Phys. Rev. B 63, 066615 (2001). [CrossRef]
  21. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Non-regularly shaped plasmon resonant nanoparticles as localized light source for near-field microscopy," J. Microsc. 202, 60-65 (2001). [CrossRef] [PubMed]
  22. C. Girard, J.-C. Weeber, A. Dereux, O. J. F. Martin, and J.-P. Goudonnet "Optical magnetic near-field around nanometer-scale surface structures," Phys. Rev. B 55, 16487-16497 (1997). [CrossRef]
  23. B. T. Draine, "The discrete dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1988). [CrossRef]
  24. J. P. Kottmann, O. J. F. Martin, D. R. Smith and S. Schultz, "Field polarization and polarization charge distributions in plasmon resonant particles," New J. Phys. 2, 27.1-27.9 (2000). [CrossRef]
  25. J. P. Kottmann and O.J.F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 655-663 (2001). [CrossRef] [PubMed]
  26. C. Girard and S. Maghezzi, "Dispersion forces between a spherical probe tip and a periodic crystal: study of different asymptotic cases," Surf. Sci. 255, L571-L578 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited