OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 15 — Jul. 23, 2007
  • pp: 9692–9700

The plasmon Talbot effect

Mark R. Dennis, Nikolay I. Zheludev, and F. Javier García de Abajo  »View Author Affiliations


Optics Express, Vol. 15, Issue 15, pp. 9692-9700 (2007)
http://dx.doi.org/10.1364/OE.15.009692


View Full Text Article

Enhanced HTML    Acrobat PDF (2867 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The plasmon analog of the self-imaging Talbot effect is described and theoretically analyzed. Rich plasmon carpets containing hot spots are shown to be produced by a row of periodically-spaced surface features. A row of holes drilled in a metal film and illuminated from the back side is discussed as a realizable implementation of this concept. Self-images of the row are produced, separated from the original one by distances up to several hundreds of wavelengths in the examples under consideration. The size of the image focal spots is close to half a wavelength and the spot positions can be controlled by changing the incidence direction of external illumination, suggesting the possibility of using this effect (and its extension to non-periodic surface features) for far-field patterning and for long-distance plasmon-based interconnects in plasmonic circuits, energy transfer, and related phenomena.

© 2007 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 11, 2007
Revised Manuscript: July 13, 2007
Manuscript Accepted: July 13, 2007
Published: July 19, 2007

Citation
Mark R. Dennis, Nikolay I. Zheludev, and F. Javier García de Abajo, "The plasmon Talbot effect," Opt. Express 15, 9692-9700 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9692


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  2. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  3. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, "Plasmonics: the next chip-scale technology," Materials Today 9, 20-27 (2006). [CrossRef]
  4. J. A. Conway, S. Sahni, and T. Szkopek, "Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs," Opt. Express 15, 4474-4484 (2007). [CrossRef] [PubMed]
  5. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates," Nano Lett. 5, 1569-1574 (2005). [CrossRef] [PubMed]
  6. H. F. Talbot, "Facts relating to optical science, No. IV," Philos. Mag. 9, 401-407 (1836).
  7. Lord Rayleigh, "On copying diffraction-grating and on some phenomena connected with therewith," Philos.Mag. 11, 196-205 (1881).
  8. K. Patorski, "The self imaging phenomenon and its applications," Prog. Opt. 27, 1-108 (1989). [CrossRef]
  9. M. V. Berry and S. Klein, "Integer, fractional and fractal Talbot effects," J. Mod. Opt. 43, 2139-2164 (1996). [CrossRef]
  10. A. W. Lohmann and D. E. Silva, "An interferometer based on the Talbot effect," Opt. Commun. 2, 413-415 (1971). [CrossRef]
  11. A. W. Lohmann, "An array illuminator based on the Talbot effect," Optik 79, 41-45 (1988).
  12. M. Testorf, J. Jahns, N. A. Khilo, and A. M. Goncharenko, "Talbot effect for oblique angle of light propagation," Opt. Commun. 129, 167-172 (1996). [CrossRef]
  13. K. O’Holleran, M. J. Padgett, and M. R. Dennis, "Topology of optical vortex lines formed by the interference of three, four and five plane waves," Opt. Express 14, 3039-3044 (2006). [CrossRef] [PubMed]
  14. I. S. Averbukh and N. F. Perelman, "Fractional revivals: Universality in the long-term evolution of quantum wave packets beyond the correspondence principle dynamics," Phys. Lett. A 139, 449-453 (1989). [CrossRef]
  15. M. V. Berry, "Quantum fractals in boxes," J. Phys. A: Math Gen. 29, 6617-6629 (1996). [CrossRef]
  16. E. Noponen and J. Turunen, "Electromagnetic theory of Talbot imaging," Opt. Commun. 98, 132-140 (1993). [CrossRef]
  17. T. Saastamoinen, J. Tervo, P. Vahimaa, and J. Turunen, "Exact self-imaging of transversely periodic fields," J. Opt. Soc. Am. A 21, 1424-1429 (2004). [CrossRef]
  18. W. D. Montgomery, "Self-imaging objects of infinite aperture," J. Opt. Soc. Am. 57, 772-778 (1967). [CrossRef]
  19. A. W. Lohmann, H. Knuppertz, and J. Jahns, "Fractional Montgomery effect: a self-imaging phenomenon," J. Opt. Soc. Am. A 22, 1500-1508 (2005). [CrossRef]
  20. F. M. Huang, N. Zheludev, Y. Chen, and F. J. Garc’ıa de Abajo, "Focusing of light by a nano-hole array," Appl. Phys. Lett. 90, 091,119 (2007). [CrossRef]
  21. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  22. G. W. Ford and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984). [CrossRef]
  23. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999).
  24. W. Rudin, Real and Complex Analysis (McGraw-Hill, London, 1941).
  25. M. V. Berry and E. Bodenschatz, "Caustics, multiply reconstructed by Talbot interference," J. Mod. Opt. 46, 349-365 (1999).
  26. F. J. Garc’ıa de Abajo, "Light scattering by particle and hole arrays," Rev. Mod. Phys. (in press).
  27. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garc’ıa de Abajo,W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, "Adaptive sub-wavelength control of nano-optical fields," Nature 446, 301-304 (2007). [CrossRef] [PubMed]
  28. M. V. Berry and S. Popescu, "Evolution of quantum superoscillations and optical superresolution without evanescent waves," J. Phys. A: Math Gen. 39, 6965-6977 (2006). [CrossRef]
  29. F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-range coupled surface exciton polaritons," Phys. Rev. Lett. 64, 559-562 (1990). [CrossRef] [PubMed]
  30. R. Ulrich andM. Tacke, "Submillimeter waveguiding on periodic metal structure," Appl. Phys. Lett. 22, 251-253 (1972). [CrossRef]
  31. A. Mugarza, A. Mascaraque, V. P’erez-Dieste, V. Repain, S. Rousset, F. J. Garc’ıa de Abajo, and J. E. Ortega, "Electron confinement in surface states on a stepped gold surface revealed by angle-resolved photoemission," Phys. Rev. Lett. 87, 107,601 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited