OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 15 — Jul. 23, 2007
  • pp: 9867–9876

Unique interpretation of Talbot Bands and Fourier domain white light interferometry

Adrian Gh. Podoleanu  »View Author Affiliations

Optics Express, Vol. 15, Issue 15, pp. 9867-9876 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (153 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical model is developed to interpret the output of the diffraction grating spectrometer used to analyze the channelled spectrum produced by a low coherence interferometer set-up. This model leads to an unique interpretation which covers both cases (i) of Talbot bands and (ii) of a Michelson interferometer used in most spectral interferometry set-ups for sensing as well as for Fourier domain optical coherence tomography (FDOCT). Explanation of Talbot bands visibility as well as the decay of sensitivity with depth, characteristic for FDOCT, is explained by considering the extension of the two wavetrains diffracted by the diffraction grating in the spectrometer.

© 2007 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: March 29, 2007
Revised Manuscript: July 17, 2007
Manuscript Accepted: July 18, 2007
Published: July 20, 2007

Virtual Issues
Vol. 2, Iss. 8 Virtual Journal for Biomedical Optics

Adrian Gh. Podoleanu, "Unique interpretation of Talbot Bands and Fourier domain white light interferometry," Opt. Express 15, 9867-9876 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. M. Smith, C. C. Dobson, "Absolute Displacement Measurements using Modulation of the Spectrum of White Light in a Michelson Interferometer," Appl. Opt. 28, 3339-42, (1981). [CrossRef]
  2. J. Schwider and L. Zhou, "Dispersive interferometric profilometer," Opt. Lett. 19, 995-997, 1994). [CrossRef] [PubMed]
  3. K. -N. Joo and S. -W. Kim, "Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser," Opt. Express 14, 5954-5960 (2006) [CrossRef] [PubMed]
  4. S. Taplin, A. Gh. PodoleanuD. J. Webb, D. A. Jackson, "Displacement Sensor Using Channeled Spectrum Dispersed on a Linear CCD Array," Electron. Lett. 29,896-897, (1993). [CrossRef]
  5. A. Gh. PodoleanuS. Taplin,D. J. Webb, D. A. Jackson, "Channelled Spectrum Liquid Refractometer," Rev. Sci. Instr. 64,3028-9, (1993). [CrossRef]
  6. G. Hausler, M. W. Lindner, ""Coherence radar" and "spectral radar" - new tools for dermatological diagnosis," J. Biomed. Opt. 3,21-31 (1998). [CrossRef]
  7. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography", Opt. Express 11, 889-894, (2003). [CrossRef] [PubMed]
  8. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28,2067-2069 (2003). [CrossRef] [PubMed]
  9. T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, "Profilometry with line-field Fourier-domain interferometry," Opt. Express 13, 695-701 (2005). [CrossRef] [PubMed]
  10. B. Park, M. C. Pierce, B. Cense, S. -H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 13, 3931-3944 (2005) [CrossRef] [PubMed]
  11. A. Gh. Podoleanu, S. TaplinD. J. Webb, D. A. Jackson, "Channeled Spectrum Display using a CCD Array for Student Laboratory Demonstrations," European J. Phys. 15,266-271, (1994). [CrossRef]
  12. F. A. Jenkins, H. E. White, in Fundamentals of Optics, (McGraw-Hill, 1957), 284;
  13. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  14. A. Bachmann, R. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006) [CrossRef] [PubMed]
  15. M. A. Choma, M. V. Sarunic, C. Yang and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189, (2003). [CrossRef] [PubMed]
  16. A. B. Vakhtin, K. A. Peterson, and D. J. Kane, "Resolving the complex conjugate ambiguity in Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram," Opt. Lett. 31, 1271-1273 (2006). [CrossRef] [PubMed]
  17. M. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers," Opt. Express 13, 957-967 (2005). [CrossRef] [PubMed]
  18. F. Talbot, "An experiment on the interference of light," Philos. Mag. 10, 364, (1837).
  19. G. B. Airy, "The Bakerian Lecture - on the theoretical explanation of an apparent new polarity of light," Phil. Trans. R. Soc. London 130, 225-244, (1840). [CrossRef]
  20. A. L. King and R. Davis, "The Curious Bands of Talbot," Am. J. Phys. 39, 1195-1198, (1971). [CrossRef]
  21. A. Gh. Podoleanu, S. Taplin, D. J. Webb, D. A. Jackson, "Talbot-like Bands for Laser Diode Below Threshold," J. Opt. A, Pure Appl. Opt. 6, 413 - 424, (1997).
  22. A. Gh. Podoleanu, S. Taplin, D. J. Webb and D. A. Jackson, "Theoretical Study of Talbot-like Bands Observed Using a Laser Diode Below Threshold," J. Opt. A, Pure Appl. Opt. Vol.  7, (1998), 517-536.
  23. M. Warengham, C. P. Grover, "Dispersion curve measurement using Talbot bands," Revue Phys. Appl. 23, 1169-1178 (1998). [CrossRef]
  24. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27,1415-1417 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited