OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 16 — Aug. 6, 2007
  • pp: 10097–10102

Local-field enhancement and plasmon tuning in bimetallic nanoplanets

Giovanni Pellegrini, Valentina Bello, Giovanni Mattei, and Paolo Mazzoldi  »View Author Affiliations

Optics Express, Vol. 15, Issue 16, pp. 10097-10102 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (635 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A full-interaction electromagnetic approach is applied to interpret the local- and far-field properties of AuAg alloy nanoplanets (i.e. a central cluster surrounded by small “satellite” clusters very close to its surface) fabricated in silica by ion implantation and ion irradiation techniques. Optical extinction spectroscopy reveals a large plasmon redshift which is dependent on the irradiation conditions. Simulations strongly suggest that the peculiar topological arrangement of the satellite clusters is responsible for the observed plasmonic features. Theoretical results also indicate that strong local-field enhancement is obtained between coupled clusters. Calculations for Ag models show that enhancement factors as high as ~100 are readily achievable.

© 2007 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(290.4020) Scattering : Mie theory
(290.4210) Scattering : Multiple scattering

ToC Category:
Optics at Surfaces

Original Manuscript: June 12, 2007
Revised Manuscript: July 13, 2007
Manuscript Accepted: July 15, 2007
Published: July 26, 2007

Virtual Issues
Vol. 2, Iss. 9 Virtual Journal for Biomedical Optics

Giovanni Pellegrini, Valentina Bello, Giovanni Mattei, and Paolo Mazzoldi, "Local-field enhancement and plasmon tuning in bimetallic nanoplanets," Opt. Express 15, 10097-10102 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Nanoclusters (Springer, 1995).
  2. S. Link and M. A. El-Sayed, "Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals," Int. Rev. Phys. Chem. 19, 409-453 (2000). [CrossRef]
  3. G. Battaglin, P. Calvelli, E. Cattaruzza, F. Gonella, R. Polloni, G. Mattei, and P. Mazzoldi, "Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass," Appl. Phys. Lett. 78, 3953-3955 (2001). [CrossRef]
  4. J. J. Penninkhof, A. Polman, L. A. Sweatlock, S. A. Maier, H. A. Atwater, A. M. Vredenberg, and B. J. Kooi, "Mega-electron-volt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass," Appl. Phys. Lett. 83, 4137-4139 (2003). [CrossRef]
  5. S. L. Zou, N. Janel, and G. C. Schatz, "Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes," J. Chem. Phys. 120, 10,871-10,875 (2004). [CrossRef]
  6. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235,408 (2005). [CrossRef]
  7. G. Mattei, G. D. Marchi, C. Maurizio, P. Mazzoldi, C. Sada, V. Bello, and G. Battaglin, "Chemical- or radiationassisted selective dealloying in bimetallic nanoclusters," Phys. Rev. Lett. 90, 085,502 (2003). [CrossRef]
  8. M. Gaudry, J. Lerme, E. Cottancin, M. Pellarin, J. L. Vialle, M. Broyer, B. Prevel, M. Treilleux, and P. Melinon, "Optical properties of (AuxAg1-x)(n) clusters embedded in alumina: Evolution with size and stoichiometry," Phys. Rev. B 6408, 085,407 (2001).
  9. K. R. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227,402 (2003). [CrossRef]
  10. C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005). [CrossRef] [PubMed]
  11. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999). [CrossRef]
  12. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimmer substrates," Nano Lett. 5, 1569-1574 (2005). [CrossRef] [PubMed]
  13. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  14. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003). [CrossRef] [PubMed]
  15. D. E. Aspnes, "Local-Field Effects and Effective-Medium Theory - a Microscopic Perspective," Am. J. Phys. 50, 704-709 (1982). [CrossRef]
  16. Y. L. Xu, "Electromagnetic Scattering by an Aggregate of Spheres," Appl. Optics 34, 4573-4588 (1995). [CrossRef]
  17. G. Pellegrini, G. Mattei, V. Bello, and P. Mazzoldi, "Interacting metal nanoparticles: Optical properties from nanoparticle dimers to core-satellite systems," Mat. Sci. Eng. C (to be published).
  18. G. Mattei, "Alloy nanoclusters in dielectric matrix," Nucl. Instrum. Methods Phys. Res. B 191, 323-332 (2002). [CrossRef]
  19. V. Bello, G. De Marchi, C. Maurizio, G. Mattei, P. Mazzoldi, M. Parolin, and C. Sada, "Ion irradiation for controlling composition and structure of metal alloy nanoclusters in SiO2," J. Non-Cryst. Solids 345-46, 685-688 (2004).
  20. S. Link, Z. L. Wang, and M. A. El-Sayed, "Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition," J. Phys. Chem. B 103, 3529-3533 (1999). [CrossRef]
  21. P. Mazzoldi and G. Mattei, "Potentialities of ion implantation for the synthesis and modification of metal nanoclusters," Riv. Del Nuovo Cimento 28, 1-69 (2005).
  22. K. Ripken, "Die optischen Konstanten von Au, Ag und ihren Legierungen im Energiebereich 2,4 bis 4,4 eV," Z. Physik 50, 228-234 (1972). [CrossRef]
  23. H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, "Width of Cluster Plasmon Resonances - Bulk Dielectric Functions and Chemical Interface Damping," Phys. Rev. B 48, 18, 178-18,188 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited