OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 16 — Aug. 6, 2007
  • pp: 10182–10188

Two-photon entanglement generation: different Bell states within the linewidth of phase-matching

G. Brida, M. V. Chekhova, M. Genovese, and L. A. Krivitsky  »View Author Affiliations


Optics Express, Vol. 15, Issue 16, pp. 10182-10188 (2007)
http://dx.doi.org/10.1364/OE.15.010182


View Full Text Article

Enhanced HTML    Acrobat PDF (426 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is shown that for a phase-matched nonlinear process producing entangled states, different Bell states are generated for different mismatch values. In particular, generation of the singlet Bell state is demonstrated within the natural linewidth of collinear frequency-degenerate type-II spontaneous parametric down-conversion (SPDC) without the o-e delay compensation. The singlet state can be filtered out by spectral selection or by the time selection of the two-photon amplitude at the output of a dispersive fibre. The effect is of considerable importance for fibre quantum communication.

© 2007 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

History
Original Manuscript: May 8, 2007
Revised Manuscript: June 12, 2007
Manuscript Accepted: June 12, 2007
Published: July 27, 2007

Citation
G. Brida, M. V. Chekhova, M. Genovese, and L. A. Krivitsky, "Two-photon entanglement generation: different Bell states within the linewidth of phase-matching," Opt. Express 15, 10182-10188 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-16-10182


Sort:  Year  |  Journal  |  Reset  

References

  1. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995). [CrossRef] [PubMed]
  2. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. G. Eberhard, "Ultrabright source of polarizationentangled photons," Phys. Rev. A 60, R773-R776 (1999). [CrossRef]
  3. G. Brida, M. Genovese, C. Novero, and E. Predazzi, "New experimental test of Bell inequalities by the use of a non-maximally entangled photon state," Phys. Lett. A 268, 12-16 (2000). [CrossRef]
  4. L. J. Wang, C. K. Hong, and S. R. Friberg, "Generation of correlated photons via four-wave mixing in optical fibres," J. Opt. B: Quantum and Semiclass. Opt. 3, 346-352 (2001). [CrossRef]
  5. J. E. Sharping, M. Fiorentino, and P. Kumar, "Observation of twin-beam-type quantum correlation in optical fiber," Opt. Lett. 26, 367369 (2001). [CrossRef]
  6. H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004). [CrossRef]
  7. J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005). [CrossRef] [PubMed]
  8. M. Genovese, "Research on hidden variable theories: A review of recent progresses," Phys. Rep.  413, 319-396 (2005). [CrossRef]
  9. D. N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, New York, 1988).
  10. Y. H. Kim, S. P. Kulik, and Y. H. Shih, "Bell-state preparation using pulsed nondegenerate two-photon entanglement," Phys. Rev. A 63, 060301(R) (2001). [CrossRef]
  11. G. Brida, M. V. Chekhova, M. Genovese, and L. A. Krivitsky, submitted a manuscript called "Bell states generation within the SPDC phase-matching bandwidth."
  12. P. G. Kwiat, A. J. Berglund, J. B. Altepeter, A. G. White, "Experimental verification of decoherence-free subspaces," Science 290, 498-501 (2000). [CrossRef] [PubMed]
  13. K. Banaszek, A. Dragan, W. Wasilewski, and C. Radzewicz, "Experimental demonstration of entanglementenhanced classical communication over a quantum channel with correlated noise," Phys. Rev. Lett. 92, 257901 (2004). [CrossRef] [PubMed]
  14. S. Braunstein and A. Mann, "Measurement of the Bell operator and quantum teleportation," Phys. Rev. A 51, R1727-R1730 (1995). [CrossRef] [PubMed]
  15. M. W. Mitchell, C. W. Ellenor, S. Schneider, and A. M. Steinberg, "Diagnosis, Prescription, and Prognosis of a Bell-State Filter by Quantum Process Tomography," Phys. Rev. Lett. 91, 120402 (2003). [CrossRef] [PubMed]
  16. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-578 (1997). [CrossRef]
  17. D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, "Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 80, 1121-1125 (1998). [CrossRef]
  18. A. V. Burlakov, S. P. Kulik, G. O. Rytikov, and M. V. Chekhova, "Biphoton light generation in polarizationfrequency bell states," JETP 95, 639-644 (2002). [CrossRef]
  19. V. P. Karassiov and A. V. Masalov, "Nonpolarized states of light in quantum optics," Opt. Spectrosc. 74, 928-936 (1993).
  20. Because in half of the cases both photons go to the same output, the state is produced with 50% probability.
  21. In this regime higher-order contributions are negligible as shown both from theoretical and experimental results, e.g. G. Zambra et al., Phys. Rev. Lett. 95, 063602 (2005). [CrossRef] [PubMed]
  22. G. Brida,M. V. Chekhova,M. Genovese,M. Gramegna, and L. A. Krivitsky, "Dispersion spreading of Biphotons in Optical Fibers and Two-Photon Interference," Phys. Rev. Lett. 96, 143601 (2006). [CrossRef] [PubMed]
  23. G. Brida, M. V. Chekhova, M. Genovese, and L. A. Krivitsky, "Interference structure of two-photon amplitude revealed by dispersion spreading," Phys. Rev. A 75, 015801 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited