OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 16 — Aug. 6, 2007
  • pp: 10294–10302

Lasing dynamics of a silicon photonic crystal microcavity

Shouyuan Shi and Dennis W. Prather  »View Author Affiliations

Optics Express, Vol. 15, Issue 16, pp. 10294-10302 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (247 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we propose a novel silicon microcavity design based on the dispersion engineered photonic crystals (PhCs). With the unique self-collimation property of PhCs, we optimize the passive cavity by tuning the design parameters, such as coupling gap size and array size, to achieve higher Q factor and drop efficiency. Highest cavity mode below the band edge is of particular interest. The strong mode confinement in the low index active material offers an opportunity to realize a lasing mechanism. To investigate the lasing dynamics we introduce the rate equations of atomic system into the electromagnetic polarization to fully describe the nonlinearity of active medium. With these auxiliary differential equations we solve the time evolutions of the electromagnetic waves and atomic populations by using the FDTD method.

© 2007 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(140.3380) Lasers and laser optics : Laser materials
(140.4780) Lasers and laser optics : Optical resonators
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Photonic Crystals

Original Manuscript: May 30, 2007
Revised Manuscript: July 23, 2007
Manuscript Accepted: July 23, 2007
Published: July 31, 2007

Shouyuan Shi and Dennis W. Prather, "Lasing dynamics of a silicon photonic crystal microcavity," Opt. Express 15, 10294-10302 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. B. Jalali, M. Paniccia, and G. Reed, "Silicon photonics," IEEE Microw. Mag. 7, 58-68 (2006). [CrossRef]
  2. L. Pavesi, "Will silicon bethe photonic material of the third millenium," J. Phys.: Condens. Matter 15, R1169-R1196 (2003). [CrossRef]
  3. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continues-wave Raman silicon laser," Nature 433, 725-728 (2005). [CrossRef] [PubMed]
  4. O. Boyraz and B. Jalali, "Demonstartion of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004). [CrossRef] [PubMed]
  5. D. W. Prather, S. Shi, D. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. Schneider, and J. Murakowski, "Routing optical waves without waveguides," Opt. Lett. 29, 50-52 (2004). [CrossRef] [PubMed]
  6. M. R. Newton, K. A. Morey, Y. H. Zhang, R. J. Snow, M. Diwekar, J. Shi, and H. S. White, "Anisotropic diffusion in face-centered cubic opals," Nano. Lett. 4, 875-880 (2004). [CrossRef]
  7. K. K. Tsia and A. W. Poon, "Dispersion-guided resonances in two dimensional photonic-crystal embedded microcavities," Opt. Express 12, 5711-5722 (2004). [CrossRef] [PubMed]
  8. D. W. Prather, A. Sharkawy, and S. Shi, Handbook of Nanoscience, Engineering and Technology (CRC Press, 2002) 1, b.
  9. S. Chang and A. Taflove, "Finite-difference time-domain model of lasing action in a four-level two-electron atomic system," Opt. Express 12, 3827-3833 (2004). [CrossRef] [PubMed]
  10. A. Taflove, Computational Electromagnetics: The Finite-Difference Time Domain Method (Artech House, Boston 1995).
  11. A. Nagra and R. A. York, "FDTD analysis of wave propagation in nonlinear absorbing and gain media," IEEE Trans. Antennas Propag. 46, 334-340 (1998). [CrossRef]
  12. X. Jiang and C. M. Soukoulis, "Time dependent theory for random lasers," Phys. Rev. Lett. 85, 70-73 (2000). [CrossRef] [PubMed]
  13. P. Sebbah and C. Vanneste, "Random laser in the localized regime," Phys. Rev. B 66,144202 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited