OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 16 — Aug. 6, 2007
  • pp: 10362–10369

Coupled resonator optical waveguide structures with highly dispersive media

Curtis W. Neff, L. Mauritz Andersson, and Min Qiu  »View Author Affiliations

Optics Express, Vol. 15, Issue 16, pp. 10362-10369 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (185 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Analysis of photonic crystal coupled resonator optical waveguide (CROW) structures with a highly dispersive background medium is presented. A finite-difference time-domain algorithm was employed which contains an exact representation of the permittivity of a three-level atomic system which exhibits electromagnetically induced transparency (EIT). We find that the coupling strength between nearest-neighbor cavities in the CROW decreases with increasing steepness of the background dispersion, which is continuously tunable as it is directly related to the control field Rabi frequency. The weaker coupling decreases the speed of pulse propagation through the waveguide. In addition, due to the dispersive nature of the EIT background, the CROW band shape is tuned around a fixed k-point. Thus, the EIT background enables dynamic tunability of the CROW band shape and the group velocity in the structure at a fixed operating point in momentum space.

© 2007 Optical Society of America

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(230.4555) Optical devices : Coupled resonators
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Optical Devices

Original Manuscript: June 28, 2007
Revised Manuscript: July 24, 2007
Manuscript Accepted: July 27, 2007
Published: August 1, 2007

Curtis W. Neff, L. Mauritz Andersson, and Min Qiu, "Coupled resonator optical waveguide structures with highly dispersive media," Opt. Express 15, 10362-10369 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. D. Marcuse, Theory of Dielectric Optical Waveguides,(Academic Press, New York, 1974).
  2. P. Yeh and A. Yariv, "Bragg reflection waveguides," Opt. Commun. 19, 427-430 (1976). [CrossRef]
  3. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999). [CrossRef]
  4. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  5. S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, S. Schultz, "Microwave propagation in two-dimensional dielectric lattices," Phys. Rev. Lett. 67, 2017-2020 (1991). [CrossRef] [PubMed]
  6. M. Bayindir, B. Temelkuran, and E. Ozbay, "Tight-binding description of the coupled defect modes in threedimensional photonic crystal," Phys. Rev. Lett. 84, 2140-2143 (2000). [CrossRef] [PubMed]
  7. K.-J. Boller, A. Imamoglu, and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593-2596 (1991). [CrossRef] [PubMed]
  8. L. V. Hau, Z. Dutton, C. H. Behroozi, and S. E. Harris, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397, 594-598 (1999). [CrossRef]
  9. M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, "Intracavity electromagnetically induced transparency," Opt. Lett. 23, 295-297 (1998). [CrossRef]
  10. G. Müller, M. Müller, A. Wicht, R.-H. Rinkleff, and K. Danzmann, "Optical resonator with steep internal dispersion," Phys. Rev. A 56, 2385-2389 (1997). [CrossRef]
  11. M. Soljačić, E. Lidorikis, L. V. Hau, and J. D. Joannopoulos, "Enhancement of microcavity lifetimes using highly dispersive materials," Phys. Rev. E 71, 026602 (2005). [CrossRef]
  12. C. W. Neff, L. M. Andersson, and M. Qiu, "Modelling electromagnetically induced transparency media using the finite-difference time-domain method," New J. Phys. 9, 48 (2007). [CrossRef]
  13. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 1997).
  14. P. Jänes, J. Tidström, and L . Thyl’en, "Limits on optical pulse compression and delay bandwidth product in electromagnetically induced transparency media," J. Lightwave Technol. 23, 3893-3899 (2005). [CrossRef]
  15. M. Okoniewski, M. Mrozowski, and M. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Micro. Guided Wave Lett. 7, 121-123 (1997). [CrossRef]
  16. A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method, 2nd ed. (Artech House, Boston, 2000).
  17. M. Han, R. Dutton, and S. Fan, "Model dispersive media in finite-difference time-domain method with complexconjugate pole-residue pairs," Microwave andWireless Components Letters, IEEE [see also IEEE Micro. Guided Wave Lett.] 16, 119-121 (2006).
  18. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comp. Phys. 114, 185-200 (1994). [CrossRef]
  19. W.-H. Guo, W.-J. Li, and Y.-Z. Huang, "Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation," Microwave and Wireless Components Letters, IEEE [see also IEEE Micro. Guided Wave Lett.] 11, 223-225 (2001).
  20. G. A. Baker and J. L. Gammel, The Pad’e Approximant in Theoretical Physics, (Academic, New York, 1970).
  21. manuscript in preparation
  22. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature (London) 409, 490-493 (2001). [CrossRef]
  23. J. Tidström, P. Jänes, and L. M. Andersson, "Delay bandwidth product of electromagnetically induced transparency media," Phys. Rev. A 75, 53803 (2007). [CrossRef]
  24. M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited