OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 16 — Aug. 6, 2007
  • pp: 9963–9969

Slow-to-fast light using absorption to gain switching in quantum-well semiconductor optical amplifier

Piotr Konrad Kondratko and Shun-Lien Chuang  »View Author Affiliations

Optics Express, Vol. 15, Issue 16, pp. 9963-9969 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (241 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Room temperature quantum-well semiconductor optical amplifier with large input power is utilized in both the absorption and gain regime as an optical group delay and advance (slow and fast light), respectively. Material resonance created by coherent population oscillation and four wave mixing is tuned by electrical injection current, which in turn controls the speed of light. The four-wave mixing and population oscillation model explains the slow-to-fast light switching. Experimentally, the scheme achieves 200 degrees phase shift at 1 GHz, which corresponds to 0.56 delay-bandwidth product. The device presents a feasible building block of a multi-bit optical buffer system.

© 2007 Optical Society of America

OCIS Codes
(140.4480) Lasers and laser optics : Optical amplifiers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.1150) Optical devices : All-optical devices

ToC Category:
Slow Light

Original Manuscript: May 25, 2007
Revised Manuscript: July 6, 2007
Manuscript Accepted: July 16, 2007
Published: July 24, 2007

Piotr K. Kondratko and Shun-Lien Chuang, "Slow-to-fast light using absorption to gain switching in quantum-well semiconductor optical amplifier," Opt. Express 15, 9963-9969 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999). [CrossRef]
  2. C. J. Chang-Hasnain, P.-C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in semiconductor nanostructures," Proc. IEEE 91, 1884-1897 (2003). [CrossRef]
  3. S. E. Harris and L. V. Hau, "Nonlinear optics at low light levels," Phys. Rev. Lett. 82, 4611-4614 (1999). [CrossRef]
  4. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2006). [CrossRef]
  5. S.-W. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, "Slow light based on coherent population oscillation in quantum dots at room temperature," IEEE J. Quantum Electron. 43, 196-205 (2007). [CrossRef]
  6. H. Su and S. L. Chuang, "Room temperature fast light in a quantum-dot semiconductor amplifier," Appl. Phys. Lett. 88, 061,102 (2006). [CrossRef]
  7. H. Su and S. L. Chuang, "Room temperature slow light in quantum-dot devices," Opt. Lett. 31, 271-273 (2006). [CrossRef] [PubMed]
  8. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 1139,031-1139,034 (2003). [CrossRef]
  9. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a room temperature solid," Science 301, 200-202 (2003). [CrossRef] [PubMed]
  10. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Ultra-slow and superluminal light propagation in solids at room temperature," J. Cond. Matt. Phys. 16, 1321-1342 (2004). [CrossRef]
  11. H. Su, P. Kondratko, and S. L. Chuang, "Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers," Opt. Express 14, 4800-4807 (2006). [CrossRef] [PubMed]
  12. P. K. Kondratko, H. Su, and S. L. Chuang, "Room temperature variable slow light using semiconductor quantum dots," CLEO/QELS/Phast CThW5 (2006).
  13. M. van der Poel, J. Mørk, and J. M. Hvam, "Controllable delay of ultrashort pulses in a quantum dot optical amplifier," Opt. Express 13, 8032-8037 (2005). [CrossRef] [PubMed]
  14. F. Ohman, K. Yvind, and J. Mørk, "Voltage-controlled slow light in an integrated semiconductor structure with net gain," Opt. Express 14, 9955-9962 (2006). [CrossRef] [PubMed]
  15. F. Ohman, K. Yvind, and J. Mørk, "Slow light at high frequencies in an amplifying semiconductor waveguide," vol. CMN1 (CLEO/QELS/Phast, Long Beach Convention Center, California, 2006).
  16. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, "Slow light in a semiconductor waveguide at gigahertz frequencies," Opt. Express 13, 8136-8145 (2005). [CrossRef] [PubMed]
  17. G. P. Agrawal, "Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers," J. Opt. Soc. Am. B 5, 147-159 (1988). [CrossRef]
  18. T. Mukai and T. Saitoh, "Detuning characteristics and conversion efficiency of nearly degenerate four-wavemixing in a 1.5 μm traveling-wave semiconductor-laser amplifier," IEEE J. Quantum Electron. 26, 865-875 (1990). [CrossRef]
  19. G. Eisenstein, N. Tessler, U. Koren, J. M. Wiesenfeld, G. Raybon, and C. A. Burrus, "Length Dependence of the Saturation Characteristics in 1.5- μm Multiple Quantum Well Optical Amplifiers," IEEE Photon. Technol. Lett. 2, 790-791 (1990). [CrossRef]
  20. T. W. Berg, J. Mørk, and J. M. Hvam, "Gain dynamics and saturation in semiconductor quantum dot amplifiers," New J. Phys. 6, 178-201 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited