OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 17 — Aug. 20, 2007
  • pp: 10504–10519

Analysis of SFM dynamics in solitary and optically-injected VCSELs

A. Homayounfar and M. J. Adams  »View Author Affiliations

Optics Express, Vol. 15, Issue 17, pp. 10504-10519 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (300 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The aim of this paper is to use the spin-flip model (SFM) to investigate how the fundamental parameters of birefringence, spin relaxation and pumping affect the dynamics of solitary and optically-injected vertical-cavity surface-emitting lasers (VCSELs). The SFM predicts that a solitary VCSEL can exhibit diverse polarisation behaviour, including elliptical and linear stability, which can be used in polarisation switching. For given values of pumping, spin relaxation and birefringence, we analyse the electric field components, the carrier densities corresponding to spin-up and spin-down, and the relaxation oscillation frequency for a solitary VCSEL and the stability map for an optically-injected VCSEL.

© 2007 Optical Society of America

OCIS Codes
(140.3520) Lasers and laser optics : Lasers, injection-locked
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization
(270.3100) Quantum optics : Instabilities and chaos

ToC Category:

Original Manuscript: May 30, 2007
Revised Manuscript: July 18, 2007
Manuscript Accepted: July 30, 2007
Published: August 6, 2007

A. Homayounfar and M. J. Adams, "Analysis of SFM dynamics in solitary and optically-injected VCSELs," Opt. Express 15, 10504-10519 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Danckaert, B. Nagler, J. Albert, K. Panajotov, I. Veretennicoff and T. Erneux, "Minimal rate equations describing polarization switching in vertical-cavity surface-emitting lasers," Opt. Commun. 201, 129-137 (2002). [CrossRef]
  2. Z. G. Pan, S. Jiang, M. Dagenais, R. A. Morgan, K. Kojima, M. T. Asom and R. E. Leibenguth, "Optical injection induced polarization in vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 63, 2999-3001 (1993). [CrossRef]
  3. J. B. Altes, I. Gatare, K. Panajotov H. Thienpont and M. Sciamanna, "Mapping of the dynamics induced by orthogonal optical injection in vertical-cavity surface-emitting lasers," IEEE J. Select. Topics in Quantum Electron,  42, 198-207 (2006) [CrossRef]
  4. M. San Miguel, Q. Feng and J. V. Moloney, "Light-polarization dynamics in surface-emitting lasers," Phys. Rev. A 52, 1728-1739 (1995). [CrossRef] [PubMed]
  5. J. Martin-Regalado, F. Prati, M. San Miguel and N. B. Abraham, "Polarization properties of vertical- cavity surface-emitting lasers," IEEE J. Quantum Electron. 33, 765-782 (1997). [CrossRef]
  6. C-H. Chang, L. Chrostowski and C. J. Chang-Hasnain, "Injection locking of VCSELs," IEEE J. Select.Topics in Quantum Electron. 9, 1386-1393 (2003). [CrossRef]
  7. L. Chrostowski, B. Faraji, W. Hofmann, R. Shau, M. Ortsiefer and M.-C. Amann, "40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55 µm VCSELs", IEEE 20th International Semiconductor Laser Conference, Hawaii, 2006, Conference Digest pp. 117-118. [CrossRef]
  8. A. Homayounfar and M. J. Adams, "Locking bandwidth and birefringence effects for polarized optical injection in vertical-cavity surface-emitting lasers," Opt. Commun. 269, 119-127 (2007). [CrossRef]
  9. A. Homayounfar and M. J. Adams, "Spin polarized properties of optically injected VCSELs," Phys. Stat. Sol. (c) 4,604-606 (2007). [CrossRef]
  10. F. Prati, P. Caccia, M. Bache and F. Castelli, "Analysis of elliptically polarized states in vertical-cavity-surface-emitting lasers," Phys. Rev. A 69, 033810-9 (2004). [CrossRef]
  11. L. Chrostowski, X. Zhao, C. J. Chang-Hasnain, R. Shau, M. Ortsiefer and M-C. Amann, "50 GHz optically injection-locked 1.55 ?m VCSELs," IEEE Photon. Technol. Lett. 16,367-369 (2006). [CrossRef]
  12. S. Wieczorek, W. W. Chow, L. Chrostowski and C. J. Chang-Hasnain, "Improved semiconductor-laser dynamics from induced population pulsation," IEEE J. Quantum Electron. 42, 552-562 (2006). [CrossRef]
  13. H. Li, T. L. Lucas, J. G. McInerney, M. W. Wright and R. A. Morgan, "Injection locking dynamics of vertical cavity semiconductor lasers under conventional and phase conjugate injection," IEEE J. Quantum Electron. 32, 227-235 (1996). [CrossRef]
  14. G. Van der Sande, J. Danckaert, I. Veretennicoff and T. Erneux, "Rate equations for vertical-cavity surface-emitting lasers," Phys. Rev. A 67, 13809-7 (2003). [CrossRef]
  15. A. Gahl, S. Balle and M. San Miguel, "Polarization dynamics of optically pumped VCSELs," IEEE J. Quantum Electron. 35, 342-351 (1999). [CrossRef]
  16. S. Wieczorek, B. Krauskopf, T.B. Simpson and D. Lenstra, "The dynamic complexity of optically injected semiconductor lasers," Physics Report. 416, 1-128 (2005). [CrossRef]
  17. T. Erneux, J. Danckaert, K. Panajotov and I. Veretennicoff, "Two-variable reduction of the San Miguel-Feng-Moloney model for vertical-cavity surface-emitting lasers," Phys. Rev. A 59, 4660-4667 (1999). [CrossRef]
  18. R. Tackeuchi, T. Kuroda, S. Muto, Y. Nishikawa, and O. Wada, "Electron spin-relaxation dynamics in GaAs/AlGaAs quantum wells and InGaAs/InP quantum wells," Jpn. J. Appl. Phys. 38, 4680-4687 (1999). [CrossRef]
  19. A. Tackeuchi, T. Kuroda, S. Muto and O. Wada, "Picosecond electron spin-relaxation in GaAs/AlGaAs quantum wells and InGaAs/InP quantum wells," Physica B 272, 318-323 (1999) [CrossRef]
  20. S. Adachi, T. Miyashita, S. Takeyama, Y. Takagi and A. Tackeuchi, "Exciton spin dynamics in GaAs quantum wells," J. Lumin. 72-74, 307-308 (1997) [CrossRef]
  21. S. Akasaki, S. Miyata, T. Kuroda and A. Tackeuchi, "Exciton spin relaxation dynamics in InGaAs/InP quantum wells," Appl. Phys. Lett. 85, 2083-2085 (2004). [CrossRef]
  22. H. Ando, T. Sogawa and H. Gotoh, "Photon-spin controlled lasing oscillation in surface-emitting lasers," Appl. Phys. Lett. 73, 566-568 (1998). [CrossRef]
  23. J. T. Hyland, G. T. Kennedy, A. Miller and C. C. Button, "Spin relaxation and all optical polarization switching at 1.52 micrometres in InGaAs(P)/InGaAsP multiple quantum wells," Semicond. Sci. Technol. 14, 215-221 (1999). [CrossRef]
  24. J. Rudolph, S. Dohrmann, D. Hagele, W. Stolz and M. Oestreich, "Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spin-polarized electrons," Appl. Phys. Lett. 87, 241117 (2005). [CrossRef]
  25. F. Prati, P. Caccia, and F. Castelli, "Effects of gain saturation on polarization switching in vertical-cavity surface-emitting lasers," Phys. Rev. A 66, 063811 (2002). [CrossRef]
  26. Y. Hong, K. A. Shore, A. Larsson, M. Ghisoni and J. Haonen, "Polarisation switching in a vertical cavity surface emitting semiconductor laser by frequency detuning," IEE Proc. Optoelectron. 148, 31-34 (2001). [CrossRef]
  27. I. Gatare, M. Sciamanna and K. Panajotov, "Frequency-induced polarization bistability in vertical-cavity surface-emitting lasers," Phys. Rev. A 75, 023804 (2007). [CrossRef]
  28. M. Sciamanna and K. Panajotov, "Route to polarization switching induced by optical injection in vertical-cavity surface-emitting lasers," Phys. Rev. A 73, 023811 (2006). [CrossRef]
  29. A. Valle, I. Gatare, K. Panajatov and M. Sciamanna, "Transverse mode switching and locking in vertical-cavity surface-emitting lasers subject to orthogonal optical injection", IEEE J. Quantum Electron. 43, 322-333 (2007). [CrossRef]
  30. K. E. Chlouverakis and M. J. Adams, "Stability maps of injection-locked laser diodes using the largest Lyapunov exponent," Opt. Commun. 216, 405-412 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited