OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 17 — Aug. 20, 2007
  • pp: 10533–10539

Coupling localized and extended plasmons to improve the light extraction through metal films

Jean Cesario, María Ujué Gonzalez, Stéphanie Cheylan, William. L. Barnes, Stefan Enoch, and Romain Quidant  »View Author Affiliations

Optics Express, Vol. 15, Issue 17, pp. 10533-10539 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (8039 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Efficient transmission of light through a metal layer has become a key issue for a variety of applications including light-emitting diodes and solar cells. We report here on a novel strategy where localized and extended surface plasmons are combined to maximize the fluorescence transmission through a metallic film. We show that the dispersion of an artificial material formed by an array of metal nanoparticles coupled to a flat metal layer can be engineered to make the metal film, in a specific direction, 100% transmissive.

© 2007 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.2080) Optoelectronics : Polymer active devices
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: May 31, 2007
Revised Manuscript: August 1, 2007
Manuscript Accepted: August 1, 2007
Published: August 6, 2007

Virtual Issues
Vol. 2, Iss. 9 Virtual Journal for Biomedical Optics

Jean Cesario, María U. Gonzalez, Stéphanie Cheylan, William L. Barnes, Stefan Enoch, and Romain Quidant, "Coupling localized and extended plasmons to improve the light extraction through metal films," Opt. Express 15, 10533-10539 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006). [CrossRef] [PubMed]
  2. S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106(1997). [CrossRef] [PubMed]
  3. A. D. McFarland and R. P. V. Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003). [CrossRef]
  4. C. Genet and T. W. Ebbesen, "Light in tiny hole," Nature 445, 39-46 (2007). [CrossRef] [PubMed]
  5. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005). [CrossRef] [PubMed]
  7. K. H. Drexhage, Progress in Optics, (Elsevier, 1974) Vol. 12, pp. 63.
  8. R. P. Chance, A. Prock, and R. Silbey, Advances in Chemical Physics (Wiley, 1978) Vol. 37, pp 1.
  9. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, Phys. Rev. Lett. 94, 023005(2005). [CrossRef] [PubMed]
  10. R. W. Gruhlke, W. R. Holland, and D. G. Hall, "Surface plasmon cross coupling in molecular fluorescence near a corrugated thin metal film," Phys. Rev. Lett. 56, 2838-2841(1986). [CrossRef] [PubMed]
  11. S. Wedge and W. L. Barnes, "Surface plasmon-polariton mediated light emission through thin metal films," Opt. Express 12, 3673-3685 (2004). [CrossRef] [PubMed]
  12. J. Feng, T. Okamoto, and S. Kawata, "Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices," Appl. Phys. Lett. 87, 241109 (2005). [CrossRef]
  13. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002(2006). [CrossRef] [PubMed]
  14. S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006). [CrossRef] [PubMed]
  15. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, "Electromagnetic coupling between a metal nanoparticle grating and a metallic surface," Opt. Lett. 30, 3404-3406 (2005). [CrossRef]
  16. L. Lin, R. J. Reeves, and R. J. Blaikie, "Surface-plasmon-enhanced light transmission through planar metallic films," Phys. Rev. B. 74, 155407 (2006). [CrossRef]
  17. A. L. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997). [CrossRef]
  18. L. Li, "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A 13, 1024 (1996). [CrossRef]
  19. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435 (2006). [CrossRef]
  20. G. Lévêque and O. J. F. Martin, "Optical interactions in a plasmonic particle coupled to a metallic film," Opt. Express 14, 9971-9981 (2006). [CrossRef] [PubMed]
  21. H. R. Stuart and D. G. Hall, "Enhanced Dipole-Dipole Interaction between Elementary Radiators near a surface," Phys. Rev. Lett. 80, 5663-5666 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited