OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 17 — Aug. 20, 2007
  • pp: 10553–10561

Modeling and measurement of losses in silicon-on-insulator resonators and bends

Shijun Xiao, Maroof H. Khan, Hao Shen, and Minghao Qi  »View Author Affiliations


Optics Express, Vol. 15, Issue 17, pp. 10553-10561 (2007)
http://dx.doi.org/10.1364/OE.15.010553


View Full Text Article

Enhanced HTML    Acrobat PDF (362 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an analytical model to quantify losses in resonators and bends without uncertain contributions from fiber coupling in/out or waveguide cleavage facets. With resonators in add-drop configuration, intrinsic losses are calculated from the free spectral range, through-port extinction and drop-port bandwidth. We fabricated and characterized silicon-on-insulator resonator for loss analysis. At 1.55 µm, racetrack resonators with a bending radius of 4.5 µm show intrinsic losses as small as 0.14±0.014 dB/round-trip. Meanwhile, intrinsic losses increase up to 1.23 dB/round-trip in the racetrack resonator that has a bending radius of 2.25 µm. Losses in a 180o bend are estimated as a half of the intrinsic losses in these racetrack resonators, i.e., 0.07±0.007 dB/turn for a bending radius of 4.5 µm and 0.62 dB/turn for a bending radius of 2.25 µm. Loss in a 90° bend with a radius of 4.5 µm is determined to be 0.06±0.006 dB/turn at 1.55 µm. The losses in 180° or 90° bends are found to be mainly due to the transition loss between waveguide bends and straight waveguides.

© 2007 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

History
Original Manuscript: May 18, 2007
Revised Manuscript: August 1, 2007
Manuscript Accepted: August 2, 2007
Published: August 6, 2007

Citation
Shijun Xiao, Maroof H. Khan, Hao Shen, and Minghao Qi, "Modeling and measurement of losses in silicon-on-insulator resonators and bends," Opt. Express 15, 10553-10561 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-17-10553


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. K. Lee, D. R. Lim, H.C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model," Appl. Phys. Lett. 77, 1617 (2000). [CrossRef]
  2. K. K. Lee, D. R. Lim, and L. C. Kimerling, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Opt. Lett. 26, 1888-1890, (2001). [CrossRef]
  3. Y. Vlasov and S. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004). [CrossRef] [PubMed]
  4. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861-2863 (2004). [CrossRef]
  5. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometer-scale silicon electro-optic modulator," Nature 435, 325-327 (2005). [CrossRef] [PubMed]
  6. Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, "Cascaded silicon micro-ring modulators for WDM optical interconnection," Opt. Express 14, 9431-9435 (2006). [CrossRef] [PubMed]
  7. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998). [CrossRef]
  8. M. A. Popovíc, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, E. P. Ippen, F. X. Kärtner, and H. I. Smith, "Multistage high-order microring-resonator add-drop filters," Opt. Lett. 31, 2571-2573 (2006). [CrossRef] [PubMed]
  9. S. Xiao, M. H. Khan, S. Shen and M. Qi, "Silicon-on-insulator microring add-drop filters with free spectral ranges over 30 nm," submitted, IEEE J. Lightwave Technol.
  10. A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz, "Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop mutiplexers," IEEE Photon. Technol. Lett. 15, 921-923 (2003). [CrossRef]
  11. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004). [CrossRef]
  12. V. Van, P. P. Absil, J. V. Hryniewicz and P. -T. Ho, "Propagation loss in single-mode GaAs-AlGaAs microring resonators: measurement and model," IEEE J. Lightwave Technol. 19, 1734-1739, (2001). [CrossRef]
  13. R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P. -T. Ho, "Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters," IEEE J. Lightwave Technol. 20, 900-905, (2002). [CrossRef]
  14. D. Rafizadeh, J. P. Zhang, R. C. Tiberio, and S. T. Ho, "Propagation loss measurements in semiconductor microcavity ring and disk resonators," IEEE J. Lightwave Technol. 16, 1308-1314, (1998). [CrossRef]
  15. S. Zhen, H. Chen, and A. W. Poon, "Microring-resonator cross-connect filters in silicon nitride: rib waveguide dimension dependence," IEEE J. Sel. Top. Quantum Electron. 12, 1380-1387, (2006). [CrossRef]
  16. B. E. Little,  et al, "Microring resonator channel dropping filters," IEEE J. Lightwave Technol. 15, 998-1005 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited