OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 17 — Aug. 20, 2007
  • pp: 10562–10575

2D light scattering patterns of mitochondria in single cells

Xuan-Tao Su, Clarence Capjack, Wojciech Rozmus, and Christopher Backhouse  »View Author Affiliations

Optics Express, Vol. 15, Issue 17, pp. 10562-10575 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1692 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ability to characterize the mitochondria in single living cells may provide a powerful tool in clinical applications. We have recently developed a 2D (both polar angle and azimuth angle dependences) light scattering cytometric technique which we apply here to assess experimental 2D light scattering patterns from single biological cells (yeast and human). We compare these patterns to those obtained from simulations using a 3D Finite-Difference Time-Domain (FDTD) method and demonstrate that microstructure (e.g., the cytoplasm and/or nucleus) of cells generates fringes of scattered light, while in the larger human cells the light scattered by the mitochondria dominates the scatter pattern, forming compact regions of high intensity that we term ‘blobs’. These blobs provide information on the mitochondria within the cell and their analysis may ultimately be useful as a diagnostic technique.

© 2007 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(000.3110) General : Instruments, apparatus, and components common to the sciences
(000.4430) General : Numerical approximation and analysis
(170.1530) Medical optics and biotechnology : Cell analysis
(290.0290) Scattering : Scattering

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 20, 2007
Revised Manuscript: July 31, 2007
Manuscript Accepted: July 31, 2007
Published: August 7, 2007

Virtual Issues
Vol. 2, Iss. 9 Virtual Journal for Biomedical Optics

Xuan-Tao Su, Clarence Capjack, Wojciech Rozmus, and Christopher Backhouse, "2D light scattering patterns of mitochondria in single cells," Opt. Express 15, 10562-10575 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Dunn and R. Richards-Kortum, "Three-dimensional computation of light scattering from cells," IEEE J. Sel. Top. Quantum Electron. 2, 898-905 (1996). [CrossRef]
  2. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Appl. Opt. 37, 3586-3593 (1998). [CrossRef]
  3. V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, "Detection of preinvasive cancer cells," Nature 406, 35-36 (2000). [CrossRef] [PubMed]
  4. C. G. Liu, C. Capjack, and W. Rozmus, "3-D simulation of light scattering from biological cells and cell differentiation," J. Biomed. Opt. 10, 014007 (2005). [CrossRef] [PubMed]
  5. H. B. Steen and T. Lindmo, "Differential of Light-Scattering Detection in an Arc-Lamp-Based Epi-Illumination Flow Cytometer," Cytometry 6, 281-285 (1985). [CrossRef] [PubMed]
  6. J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, "Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling," Biophys. J. 88, 2929-2938 (2005). [CrossRef] [PubMed]
  7. D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, "Elastic light scattering from single cells: Orientational dynamics in optical trap," Biophys. J. 87, 1298-1306 (2004). [CrossRef] [PubMed]
  8. X. T. Su, W. Rozmus, C. Capjack, and C. J. Backhouse, "Side scatter light for micro-size differentiation and cellular analysis," Proc. SPIE 6446, 64460W (2007). [CrossRef]
  9. G. Mie, "Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions," Ann. Phys.-Berlin 25, 377-445 (1908). [CrossRef]
  10. W. T. Grandy, Scattering of Waves from Large Spheres, (Cambridge University Press, Cambridge, 2000). [CrossRef]
  11. R. Drezek, A. Dunn, and R. Richards-Kortum, "A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges," Opt. Express 6, 147-157 (2000). [CrossRef] [PubMed]
  12. J. Q. Lu, P. Yang, and X. H. Hu, "Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method," J. Biomed. Opt. 10, 024022 (2005). [CrossRef] [PubMed]
  13. A. Karlsson, J. P. He, J. Swartling, and S. Andersson-Engels, "Numerical simulations of light scattering by red blood cells," IEEE Trans. Biomed. Eng. 52, 13-18 (2005). [CrossRef] [PubMed]
  14. P. Huang, L. Feng, E. A. Oldham, M. J. Keating, and W. Plunkett, "Superoxide dismutase as a target for the selective killing of cancer cells," Nature 407, 390-395 (2000). [CrossRef] [PubMed]
  15. Y. Michikawa, F. Mazzucchelli, N. Bresolin, G. Scarlato, and G. Attardi, "Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication," Science 286, 774-779 (1999). [CrossRef] [PubMed]
  16. P. A. Trimmer, R. H. Swerdlow, J. K. Parks, P. Keeney, J. P. Bennett, S. W. Miller, R. E. Davis, and W. D. Parker, "Abnormal mitochondrial morphology in sporadic Parkinson's and Alzheimer's disease cybrid cell lines," Exp. Neurol. 162, 37-50 (2000). [CrossRef] [PubMed]
  17. J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Muller, "The spatial variation of the refractive index in biological cells," Phys. Med. Biol. 41, 369-382 (1996). [CrossRef] [PubMed]
  18. A. Brunstin, and P. F. Mullaney, "Differential light-scattering from Spherical Mammalian-Cells," Biophys. J. 14, 439-453 (1974). [CrossRef]
  19. H. L. Liu, B. Beauvoit, M. Kimura, and B. Chance, "Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity," J. Biomed. Opt. 1, 200-211 (1996). [CrossRef]
  20. F. Giess, M. G. Friedrich, J. Heberle, R. L. Naumann, and W. Knoll, "The protein-tethered lipid bilayer: A novel mimic of the biological membrane," Biophys. J. 87, 3213-3220 (2004). [CrossRef] [PubMed]
  21. C. Charpentier, T. N. Vanlong, R. Bonaly, and M. Feuillat, "Alteration of cell-wall structure in Saccharomyces-Cerevisiae and Saccharomyces-Bayanus during autolysis," Appl. Microbiol. Biotechnol. 24, 405-413 (1986). [CrossRef]
  22. C. Bauer, V. Herzog, and M. F. Bauer, "Improved technique for electron microscope visualization of yeast membrane structure," Microsc. Microanal. 7, 530-534 (2001).
  23. R. E. Marquis, "Immersion refractometry of isolated bacterial cell-walls," J. Bacteriol. 116, 1273-1279 (1973). [PubMed]
  24. E. D. Robin and R. Wong, "Mitochondrial-DNA molecules and virtual number of Mitochondria per cell in Mammalian-Cells," J. Cell. Physiol. 136, 507-513 (1988). [CrossRef] [PubMed]
  25. T. G. Frey and C. A. Mannella, "The internal structure of mitochondria," Trends Biochem. Sci. 25, 319-324 (2000). [CrossRef] [PubMed]
  26. M. Kohl, M. Cope, M. Essenpreis, and D. Bocker, "Influence of glucose-concentration on light-scattering in tissue-simulating phantoms," Opt. Lett. 19, 2170-2172 (1994). [CrossRef] [PubMed]
  27. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, "Possible correlation between blood-glucose concentration and the reduced scattering coefficient of tissues in the near-infrared," Opt. Lett. 19, 2062-2064 (1994). [CrossRef] [PubMed]
  28. P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, "Ultrafast nanolaser flow device for detecting cancer in single cells," Biomed. Microdevices 7, 331-339 (2005). [CrossRef]
  29. N. Haga, N. Fujita, and T. Tsuruo, "Mitochondrial aggregation precedes cytochrome c release from mitochondria during apoptosis," Oncogene 22, 5579-5585 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited