OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 17 — Aug. 20, 2007
  • pp: 10637–10648

Far infrared photonic crystals operating in the Reststrahl region

Richard A. Soref, Zexuan Qiang, and Weidong Zhou  »View Author Affiliations

Optics Express, Vol. 15, Issue 17, pp. 10637-10648 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1217 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report here far infrared photonic crystals comprised of a lattice-matched pair of semiconductor materials: GaP and Si, or GaAs and Ge, or AlAs and GaAs. The crystals operate in a wavelength range where the real refractive index of one material undergoes a major dispersion associated with the LO and TO phonon absorption peaks. Using electromagnetic theory, we investigated the photonic-bandgap response for both TE and TM polarizations. Propagation losses for two types of crystals are estimated in this paper. These structures offer promise for the integration of III–V materials (GaP, GaAs) on group IV (Si, or Ge) for practical, active, far infrared photonic devices, such as light sources, amplifiers, modulators, reconfigurable waveguides and switches.

© 2007 Optical Society of America

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(230.0230) Optical devices : Optical devices
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Photonic Crystals

Original Manuscript: June 26, 2007
Revised Manuscript: August 2, 2007
Manuscript Accepted: August 3, 2007
Published: August 8, 2007

Richard A. Soref, Zexuan Qiang, and Weidong Zhou, "Far infrared photonic crystals operating in the Reststrahl region," Opt. Express 15, 10637-10648 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, "Photonic band-gap crystals," J. Phys. 5, 2443-2460 (1993).
  2. M. Tokushima, H. Yamada, and Y. Arakawa, "1.5um-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab," Appl. Phys. Lett. 84, 4298-4300 (2004). [CrossRef]
  3. W. D. Zhou, "Encapsulation for efficient electrical injection of photonic crystal surface emitting lasers," Appl. Phys. Lett. 88,051106 (2006). [CrossRef]
  4. W. Zhou, V. Nair, and G. Thiruvengadam, "The impact of high dielectric constant on photonic bandgaps in PbSe nanocrystal-based photonic crystal slabs," Proc. SPIE 6128, 61280B (2006). [CrossRef]
  5. E. D. Palik, Handbook of Optical Constants of Solids, (Academic Press, 1985) Vol. I.
  6. M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials (CRC Press, 2007). [CrossRef]
  7. M. Plihal and A. A. Maradudin, "Photonic band structure of two-dimensional systems: The triangular lattice," Phys. Rev. B 44, 8565-8571 (1991).
  8. R. Leiten, "Germanium-a surprise base for high-quality nitrides," Compd. Semicond. 13, 14-17 (2007).
  9. C. G. Ribbing, "Reststrahlen material bilayers- An option for tailoring in the infrared," Appl. Opt. 32, 5531-5534 (1993). [CrossRef] [PubMed]
  10. J. A. Dobrowolski, Y. Guo, T. Tiwald, P. Ma, and D. Poitras, "Toward perfect antireflection coatings. 3. Experimental results obtained with the use of Reststrahlen materials," Appl. Opt. 45, 1555-1562 (2006). [CrossRef] [PubMed]
  11. A. Rung and C. G. Ribbing, "Polaritonic and Photonic Gap Interactions in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 92, 123901 (2004). [CrossRef] [PubMed]
  12. A. Rung, C. G. Ribbing, and M. Qiu, "Gap maps for triangular photonic crystals with a dispersive and absorbing component," Phys. Rev. B 72, 205120 (2005).
  13. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, "Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials," Phys. Rev. B 49, 11080 (1994).
  14. V. Kuzmiak and A. A. Maradudin, "Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation," Phys. Rev. B 55, 7427 (1997).
  15. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method (Artech House, 2000).
  16. J. B. Pendry, "Photonic Band Structures," J. Mod. Opt. 41, 209-229 (1994). [CrossRef]
  17. G. Veronis, R. W. Dutton, and S. Fan, "Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range," J. Appl. Phys. 97, 093104 (2005). [CrossRef]
  18. M. Qiu and S. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions," J. Appl. Phys. 87, 8268 (2000). [CrossRef]
  19. E. D. Palik, Handbook of Optical Constants of Solids, (Academic Press, 1991) Vol. II.
  20. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited