OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 17 — Aug. 20, 2007
  • pp: 10672–10680

Enhanced sensitivity digital holographic interferometry

Nazif Demoli, Marc Torzynski, and Dalibor Vukičević  »View Author Affiliations

Optics Express, Vol. 15, Issue 17, pp. 10672-10680 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (802 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Corona discharges are generally characterized by a low optical density whose detection is often near or under the limits of interferometric techniques. In this paper, we propose a method of digital holographic interferometry that enables detection with enhanced sensitivity. This sensitivity increase is obtained by post-processing the digital holographic recordings with a set of point-wise image operations. The procedure is described mathematically and illustrated experimentally. Examples are given for an opaque object and for DC corona discharges generated in the symmetrical point-plane geometry.

© 2007 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(090.2880) Holography : Holographic interferometry

ToC Category:

Original Manuscript: April 27, 2007
Revised Manuscript: July 5, 2007
Manuscript Accepted: July 9, 2007
Published: August 8, 2007

Nazif Demoli, Marc Torzynski, and Dalibor Vukicevic, "Enhanced sensitivity digital holographic interferometry," Opt. Express 15, 10672-10680 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Adamiak and P. Atten, "Simulation of corona discharge in point-plane configuration," J. Electrost. 61, 85-98 (2004). [CrossRef]
  2. N. L. Aleksandrov, E. M. Bazelyan, F. D’Alessandro, and Y. P. Raizer, "Numerical simulations of thunderstorm-induced corona processes near lightning rods installed on grounded structures," J. Electrost. 64, 802-816 (2006). [CrossRef]
  3. H. Kawamoto, H. Yasuda, and S. Umezu, "Flow distribution and pressure of air due to ionic wind in pin-to-plate corona discharge system," J. Electrost. 64, 400-407 (2006). [CrossRef]
  4. F. Soetomo, G. M. Colver, and K. Forouraghi, "Micro-force measurement of drag on a small flat plate in the presence of a corona discharge," J. Electrost. 64, 525-530 (2006). [CrossRef]
  5. J. Jarrige and P. Vervisch, "Decomposition of three volatile organic compounds by nanosecond pulsed corona discharge: Study of by-product formation and influence of high voltage pulse parameters," J. Appl. Phys. 99, 113303 (2006). [CrossRef]
  6. Y. Yamada, A. Koizumi, K. Ishikawa, Y. Hishinuma, and K. Tatenuma, "Development of a radon trap device using a corona discharge," Radiat. Prot. Dosimetry 117, 414-418 (2005). [CrossRef] [PubMed]
  7. K.-L. Yu, J.-J. Zou, Y.-H. Ben, Y.-P. Zhang, and C.-J. Liu, "Synthesis of NiO-embedded carbon nanotubes using corona discharge enhanced chemical vapor deposition," Diamond Relat. Mater. 15, 1217-1222 (2006). [CrossRef]
  8. Y. I. Ostrovsky, M. M. Butusov, G. V. Ostrovskaya, Interferometry by Holography (Springer-Verlag, 1980).
  9. Q. Yu, "Fringe multiplication methods for digital interferometric fringes," Appl. Opt. 28, 4323-4327 (1989). [CrossRef] [PubMed]
  10. K. Verma and B. Han, "Sensitivity enhancement of far-infrared Fizeau interferometry by digital image processing," Opt. Eng. 40, 1970-1977 (2001). [CrossRef]
  11. N. Demoli, J. Meštrovi?, and I. Sovi?, "Subtraction digital holography," Appl. Opt. 42, 798-804 (2003). [CrossRef] [PubMed]
  12. T. Colomb, F. Montfort, J. Kuehn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, P. Marquet, and C. Depeursinge, "Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy," J. Opt. Soc. Am. A 23, 3177-3190 (2006). [CrossRef]
  13. N. Demoli and I. Demoli, "Dynamic modal characterization of musical instruments using digital holography," Opt. Express 13, 4812-4817 (2005). [CrossRef] [PubMed]
  14. N. Demoli, "Real-time monitoring of vibration fringe patterns by optical reconstruction of digital holograms: mode beating detection," Opt. Express 14, 2117-2122 (2006). [CrossRef] [PubMed]
  15. U. Schnars and W. P. O. Jüptner "Digital recording and reconstruction of holograms in hologram interferometry and shearography," Appl. Opt. 33, 4373-4377 (1994). [CrossRef] [PubMed]
  16. N. Demoli, D. Vukicevic, and M. Torzynski, "Dynamic digital holographic interferometry with three wavelenghts," Opt. Express 11, 767-774 (2003). [CrossRef] [PubMed]
  17. N. Demoli and D. Vukicevic, "Detection of hidden stationary deformations of vibrating surfaces by use of time-averaged digital holographic interferometry," Opt. Let. 29, 2423-2425 (2004). [CrossRef]
  18. S. Schedin, G. Pedrini, H. J. Tiziani, A. K. Aggerwal, M. E. Gusev, "Highly sensitive pulsed digital holography for built-in defect analysis with a laser excitation," Appl. Opt. 40, 100-103 (2001). [CrossRef]
  19. L. Z. Cai, Q. Liu, X. L. Yang, Y. R. Wang, "Sensitivity adjustable contouring by digital holography and a virtual reference wavefront," Opt. Commun. 221, 49-54 (2003). [CrossRef]
  20. A. Asundi and V. R. Singh, "Amplitude and phase analysis in digital dynamic holography," Opt. Lett. 31, 2420-2422 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited