OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 17 — Aug. 20, 2007
  • pp: 10725–10732

High-energy femtosecond Yb-doped dispersion compensation free fiber laser

B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and Ammar Hideur  »View Author Affiliations

Optics Express, Vol. 15, Issue 17, pp. 10725-10732 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (702 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a mode-locked high energy fiber laser operating in the dispersion compensation free regime. The sigma cavity is constructed with a saturable absorber mirror and short-length large-mode-area photonic crystal fiber. The laser generates positively-chirped pulses with an energy of 265 nJ at a repetition rate of 10.18 MHz in a stable and self-starting operation. The pulses are compressible down to 400 fs leading to a peak power of 500 kW. Numerical simulations accurately reflect the experimental results and reveal the mechanisms for self consistent intra-cavity pulse evolution. With this performance mode-locked fiber lasers can compete with state-of-the-art bulk femtosecond oscillators for the first time and pulse energy scaling beyond the µJ-level appears to be feasible.

© 2007 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.3510) Lasers and laser optics : Lasers, fiber
(140.7090) Lasers and laser optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 18, 2007
Revised Manuscript: August 2, 2007
Manuscript Accepted: August 2, 2007
Published: August 9, 2007

B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and A. Hideur, "High-energy femtosecond Yb-doped dispersion compensation free fiber laser," Opt. Express 15, 10725-10732 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers, (New York: Marcel Dekker, 2002). [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics, (Academic, New York, 1995).
  3. K. Tamura, L. E. Nelson, H. A. Haus and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149 (1994). [CrossRef]
  4. K. Tamura, E. P. Ippen and H. A. Haus, "Pulse dynamics in stretched-pulse fiber lasers," Appl. Phys. Lett. 67, 158 (1995). [CrossRef]
  5. G. Lenz, K. Tamura, H. A. Haus and E. P. Ippen, "All-solid-state femtosecond source at 1.55 µm," Opt. Lett. 20,1289 (1995). [CrossRef] [PubMed]
  6. F. Ö. Ilday, J. Buckley, W. Clark and F.W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 91, 213902 (2004). [CrossRef]
  7. B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel and J. Limpert, "Self-similar low-noise ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63 (2006). [CrossRef]
  8. R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893 (2004). [CrossRef]
  9. L. M. Zhao, D. Y. Tang and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1788 (2006). [CrossRef] [PubMed]
  10. A. Chong, J. Buckley, W. Renninger and F. Wise, "All-normal dispersion femtosecond fiber laser," Opt. Express 14, 10095 (2006). [CrossRef] [PubMed]
  11. A. Albert, V. Coudec, L. Lefort and A. Barthelemy, "High-energy femtosecond pulses from an ytterbium-doped fiber laser with a new cavity design," IEEE Photon. Technol. Lett. 16, 416 (2004). [CrossRef]
  12. J. R. Buckley, F. W. Wise, F. Ö. Ilday and T. Sosnowski, "Femtosecond fiber lasers with pulse energies above 10 nJ," Opt. Lett. 30, 1888 (2005). [CrossRef] [PubMed]
  13. M. J. Messerly, J. W. Dawson, and C. P. J. Barty, "25 nJ Passively Mode-Locked Fiber Laser at 1080 nm," Conference on Lasers and Electro-Optics (CLEO), CThC7, Long Beach, CA (2006).
  14. B. Ortaç, J. Limpert and A. Tünnermann, "High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime," Opt. Lett. 32, 2149 (2007). [CrossRef] [PubMed]
  15. C. Hoenninger, A. Courjaud, P. Rigail, E. Mottay, M. Delaigue, N. Deguil-Robin, J. Limpert, I. Manek-Hoenninger and F. Salin, "0.5 µJ Diode Pumped Femtosecond Laser Oscillator at 9 MHz," Advanced Solid-State Photonics (ASSP), ME2, Vienne, Austria (2005).
  16. S. V. Marchese, T. Südmeyer, M. Golling, R. Grange and U. Keller, "Pulse energy scaling to 5 ?J from a femtosecond thin disk laser," Opt. Lett. 31, 2728 (2006). [CrossRef] [PubMed]
  17. S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators," New J. Phys. 7, 216 (2005). [CrossRef]
  18. V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005). [CrossRef]
  19. A. Killi, U. Morgner, M. J. Lederer, and D. Kopf, "Diode-pumped femtosecond laser oscillator with cavity dumping," Opt. Lett. 29, 1288 (2004). [CrossRef] [PubMed]
  20. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault and F. Salin, "Extended single-mode photonic crystal fiber lasers," Opt. Express 14, 2715 (2006). [CrossRef] [PubMed]
  21. T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tünnermann, M. Jupé and D. Ristau, "Highly-efficient transmission gratings in fused silica for chirped pulse amplification systems," Appl. Opt. 42, 6934 (2003). [CrossRef] [PubMed]
  22. T. Schreiber, B. Ortaç, J. Limpert and A. Tünnermann, "On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations," Opt. Express 15, 8252 (2007) [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited