OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 17 — Aug. 20, 2007
  • pp: 10947–10957

First-principles study: size-dependent optical properties for semiconducting silicon carbide nanotubes

S.-P. Huang, D.-S. Wu, J.-M. Hu, H. Zhang, Z. Xie, H. Hu, and W.-D. Cheng  »View Author Affiliations


Optics Express, Vol. 15, Issue 17, pp. 10947-10957 (2007)
http://dx.doi.org/10.1364/OE.15.010947


View Full Text Article

Enhanced HTML    Acrobat PDF (502 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using first-principles calculations, we investigate the effect of tube size on optical properties of the zigzag, armchair, and chiral SiC nanotubes. The results indicate that the optical spectra of SiC nanotubes are dependent on the diameter and chirality, and that optical anisotropy is observed for different light polarizations. For a given chirality of SiCNTs, redshifts or blueshifts of the peaks in the dielectric function and energy loss function with increasing tube diameter are possible due to the competition between the size effect and π orbitals overlapping, and the shifts become smaller as the tube diameter increases. The unusual optical properties of semiconducting SiC nanotubes present an opportunity for applications in electro-optical devices.

© 2007 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(300.6470) Spectroscopy : Spectroscopy, semiconductors

ToC Category:
Materials

History
Original Manuscript: May 9, 2007
Revised Manuscript: June 21, 2007
Manuscript Accepted: August 13, 2007
Published: August 16, 2007

Citation
S. P. Huang, D. S. Wu, J. M. Hu, H. Zhang, Z. Xie, H. Hu, and W. D. Cheng, "First-principles study: size-dependent optical properties for semiconducting silicon carbide nanotubes," Opt. Express 15, 10947-10957 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-17-10947


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Iijima, "Helical microtubules of graphitic carbon," Nature (London) 354, 56-58 (1991). [CrossRef]
  2. N. G. Chopra, R. J. Luyken, K. Cherry, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, "Boron-Nitride nanotubes," Science 269, 966-967 (1995). [CrossRef] [PubMed]
  3. A. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard, "Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge," Phys. Rev. Lett. 76, 4737-4740 (1996). [CrossRef] [PubMed]
  4. D. Goldberg, Y. Bando, W. Han, K. Kurashima, and T. Sato, "Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction," Chem. Phys. Lett. 308, 337-342 (1999). [CrossRef]
  5. X. H. Sun, C. P. Li, W. K. Wong, N. B. Wong, C. S. Lee, S. T. Lee, and B. T. Teo, "Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes," J. Am. Chem. Soc. 124, 14464-14471 (2002). [CrossRef] [PubMed]
  6. M. Zhao, Y. Xia, F. Li, R. Q. Zhang, and S.-T. Lee, "Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations," Phys. Rev. B 71, 085312 (2005). [CrossRef]
  7. G. Mpourmpakis, G. E. Froudakis, G. P. Lithoxoos, and J. Samios, "SiC nanotubes: A novel material for hydrogen storage," Nano Lett. 6, 1581-1583 (2006). [CrossRef] [PubMed]
  8. M. Menon, E. Richter, A. Mavrandonakis, G. Froudakis, and A. N. Andriotis, "Structure and stability of SiC nanotubes," Phys. Rev. B 69, 115322 (2004). [CrossRef]
  9. R. J. Baierle, P. Piquini, L. P. Neves, and R. H. Miwa, "Ab initio study of native defects in SiC nanotubes," Phys. Rev. B 74, 155425 (2006). [CrossRef]
  10. A. Gali, "Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes," Phys. Rev. B 73, 245415 (2006). [CrossRef]
  11. M. W. Zhao, Y. Y. Xia, R. Q. Zhang, and S.-T. Lee, "Manipulating the electronic structures of silicon carbide nanotubes by selected hydrogenation." J. Chem. Phys. 122, 214707 (2005). [CrossRef] [PubMed]
  12. F. Li, Y. Y. Xia, M. W. Zhao, X. D. Liu, B. D. Huang, Z. H. Yang, Y. J. Ji, and C. Song, "Density-functional theory calculations of XH3-decorated SiC nanotubes(X={C, Si}): Structures, energetics and electronic structures," J. Appl. Phys. 97, 104311 (2005). [CrossRef]
  13. T. He, M. W. Zhao, Y. Y. Xia, W. F. Li, C. Song, X. H. Lin, X. D. Liu, and L. M. Mei, "Tuning the electronic structures of semiconducting SiC nanotubes by N and NHx (x=1, 2) groups," J. Chem. Phys. 125, 194710 (2006). [CrossRef] [PubMed]
  14. P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, "Electronic structure and optical limiting behavior of carbon nanotubes," Phys. Rev. Lett. 82, 2548 (1999). [CrossRef]
  15. N. Kouklin, M. Tzolov, D. Straus, A. Yin, and J. M. Xu, "Infrared absorption properties of carbon nanotubes synthesized by chemical vapor deposition," Appl. Phys. Lett. 85, 4463-4465 (2004). [CrossRef]
  16. D. E. Milkie, C. Staii, S. Paulson, E. Hindman, A. T. Johnson, and J. M. Kikkawa, "Controlled switching of optical emission energies in semiconducting single-walled carbon nanotubes," Nano Lett. 5, 1135-1138 (2005). [CrossRef] [PubMed]
  17. V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, "Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study," Int. J. Quantum Chem. 77, 895-910 (2000). [CrossRef]
  18. M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, "First-principles simulation: ideas, illustrations and the CASTEP code," J. Phys.: Condens. Matt. 14, 2717-2744 (2002). [CrossRef]
  19. T. H. Fischer and J. Almlof, "General-methods for geometry and wave-function optimization," J. Phys. Chem. 96, 9768 (1992). [CrossRef]
  20. D. Vanderbilt, "Soft self-consistent pseudopotentials in a generalized eigenvalue formalism," Phys. Rev. B 41, 7892-7895 (1990). [CrossRef]
  21. X. G. Xu, C. Z. Wang, W. Liu, X. Meng, Y. Sun, and G. Chen, "Ab initio study of the effects of Mg doping on electronic structure of Li(Co,Al)O2," Acta Phys. Sin. 54, 313-316 (2005).
  22. J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett. 77, 3865-3868 (1996). [CrossRef]
  23. J. S. Lin, A. Qteish, M. C. Payne, and V. Heine, "Optimized and transferable nonlocal separable ab initio pseudopotentials," Phys. Rev. B 47, 4174 (1993). [CrossRef]
  24. S. Saha, and T. P. Sinha, "Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3," Phys. Rev. B 62, 8828 (2000). [CrossRef]
  25. M. Q. Cai, Z. Yin, and M. S. Zhang, "First-principles study of optical properties of barium titanate," Appl. Phys. Lett. 83, 2805-2807 (2003). [CrossRef]
  26. J. Sun, H. T. Wang, N. B. Ming, J. L. He, and Y. J. Tian, "Optical properties of heterodiamond BC2N using first-principles calculations," Appl. Phys. Lett. 84, 4544-4546 (2004). [CrossRef]
  27. Y. Miyamoto and B. D. Yu, "Computational designing of graphitic silicon carbide and its tubular forms," Appl. Phys. Lett. 80, 586-588 (2002). [CrossRef]
  28. O. Madelung, Landolt-Börnstein, eds., Physics of Group IV Elements and III-V Compounds, (Springer, Berlin, 1982) New Series, Group III, Vol. 17a.
  29. V. A. Margulis, E. A. Gaiduk, E. E. Muryumin, O. V. Boyarkina, and L. V. Fomina, "Linear optical properties of zigzag single-walled BN nanotube ensembles from a model calculation," Phys. Rev. B 74, 245419 (2006). [CrossRef]
  30. H. Pan, Y. P. Feng, and J. Y. Lin, "First-principles study of optical spectra of single-wall BC2N nanotubes," Phys. Rev. B 73, 035420 (2006). [CrossRef]
  31. W. Z. Liang, X. J. Wang, S. Yokojima, and G. Chen, "Electronic structures and optical properties of open and capped carbon nanotubes," J. Am. Chem. Soc. 122, 11129 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited