OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 18 — Sep. 3, 2007
  • pp: 11082–11094

Collective oscillations in optical matter

F. J. García de Abajo  »View Author Affiliations

Optics Express, Vol. 15, Issue 18, pp. 11082-11094 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (430 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Atom and nanoparticle arrays trapped in optical lattices are shown to be capable of sustaining collective oscillations of frequency proportional to the strength of the external light field. The spectrum of these oscillations determines the mechanical stability of the arrays. This phenomenon is studied for dimers, strings, and two-dimensional planar arrays. Laterally confined particles free to move along an optical channel are also considered as an example of collective motion in partially-confined systems. The fundamental concepts of dynamical response in optical matter introduced here constitute the basis for potential applications to quantum information technology and signal processing. Experimental realizations of these systems are proposed.

© 2007 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(050.1950) Diffraction and gratings : Diffraction gratings
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(290.5870) Scattering : Scattering, Rayleigh

ToC Category:

Original Manuscript: June 20, 2007
Revised Manuscript: July 26, 2007
Manuscript Accepted: July 28, 2007
Published: August 20, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

F. J. García De Abajo, "Collective oscillations in optical matter," Opt. Express 15, 11082-11094 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, and I. Bloch, "Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms," Nature 415, 39-44 (2002). [CrossRef] [PubMed]
  2. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, "Optical binding," Phys. Rev. Lett. 63, 1233-1236 (1989). [CrossRef] [PubMed]
  3. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, "Optical matter: Crystallization and binding in intense optical fields," Science 249, 749-754 (1990). [CrossRef] [PubMed]
  4. P. Münstermann, T. Fischer, P. Maunz, P. W. H. Pinkse, and G. Rempe, "Observation of cavity-mediated longrange light forces between strongly coupled atoms," Phys. Rev. Lett. 84, 4068-4071 (2000). [CrossRef] [PubMed]
  5. B. Nagorny, T. Elsässer, and A. Hemmerich, "Collective atomic motion in an optical lattice formed inside a high finesse cavity," Phys. Rev. Lett. 91, 153003 (2003). [CrossRef] [PubMed]
  6. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, "Fast quantum gates for neutral atoms," Phys. Rev. Lett. 85, 2208-2211 (2000). [CrossRef] [PubMed]
  7. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  8. C. A. Ashley and S. Doniach, "Theory of extended x-ray absorption edge fine structure (EXAFS) in crystalline solids," Phys. Rev. B 11, 1279-1288 (1975). [CrossRef]
  9. A. Ashkin, "Applications of laser radiation pressure," Science 210, 1081-1088 (1980). [CrossRef] [PubMed]
  10. A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria," Science 235, 1517-1520 (1987). [CrossRef] [PubMed]
  11. P.M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the optical trapping range of gold nanoparticles," Nano Lett. 5, 1937-1942 (2005). [CrossRef] [PubMed]
  12. M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, "Optical trapping and alignment of single gold nanorods by using plasmon resonances," Opt. Lett. 31, 2075-2077 (2006). [CrossRef] [PubMed]
  13. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  14. D. G. Grier and Y. Roichman, "Holographic optical trapping," Appl. Opt. 45, 880-887 (2006). [CrossRef] [PubMed]
  15. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477-480 (2007). [CrossRef]
  16. F. J. García de Abajo, T. Brixner, and W. Pfeiffer, "Nanoscale force manipulation in the vicinity of a metal nanostructure," J. Phys. B 40, S249-S258 (2007). [CrossRef]
  17. N. K. Metzger, K. Dholakia, and E. M. Wright, "Observation of bistability and hysteresis in optical binding of two dielectric spheres," Phys. Rev. Lett. 96, 068102 (2006). [CrossRef] [PubMed]
  18. S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, "One-dimensional optically bound arrays of microscopic particles," Phys. Rev. Lett. 89, 283901 (2002). [CrossRef]
  19. M. Hoppenbrouwers and W. van de Water, "Modes of motion of a colloidal crystal," Phys. Rev. Lett. 80, 3871-3874 (1998). [CrossRef]
  20. M. Polin, D. G. Grier, and S. R. Quake, "Anomalous vibrational dispersion in holographically trapped colloidal arrays," Phys. Rev. Lett. 96, 088101 (2006). [CrossRef] [PubMed]
  21. J. P. Gordon and A. Ashkin, "Motion of atoms in a radiation trap," Phys. Rev. A 21, 1606-1617 (1980). [CrossRef]
  22. P. C. Chaumet and M. Nieto-Vesperinas, "Time-averaged total force on a dipolar sphere in an electromagnetic field," Opt. Lett. 25, 1065-1067 (2000). [CrossRef]
  23. R. Loudon, The Quantum Theory of Light (Oxford University Press, Oxford, 2000).
  24. P. Zemánek, V. Karásek, and A. Sasso, "Optical forces acting on Rayleigh particle placed into interference field," Opt. Commun. 240, 401-415 (2004). [CrossRef]
  25. M. Guillon, "Field enhancement in a chain of optically bound dipoles," Opt. Express 14, 3045-3055 (2006). [CrossRef] [PubMed]
  26. F. J. García de Abajo, "Electromagnetic forces and torques in nanoparticles irradiated by plane waves," J. Quant. Spectrosc. Radiat. Transfer 89, 3-9 (2004). [CrossRef]
  27. T. M. Grzegorczyk, B. A. Kemp, and J. A. Kong, "Stable optical trapping based on optical binding forces," Phys. Rev. Lett. 96, 113903 (2006). [CrossRef] [PubMed]
  28. T. M. Grzegorczyk, B. A. Kemp, and J. A. Kong, "Trapping and binding of an arbitrary number of cylindrical particles in an in-plane electromagnetic field," J. Opt. Soc. Am. A 23, 2324-2330 (2006). [CrossRef]
  29. F. Depasse and J.-M. Vigoureux, "Optical binding force between two Rayleigh particles," J. Phys. D 27, 914-919 (1994). [CrossRef]
  30. M. S. Safronova, C. J. Williams, and C.W. Clark, "Optimizing the fast Rydberg quantum gate," Phys. Rev. A 67, 040303(R) (2003). [CrossRef]
  31. It should be noted that Rb has another resonance of width Γ = 2 π×2 MHz at 795 nm (frequency ω1), which combined with the 780 nm resonance (frequency ω0) gives an effective value of Γ = 2 π×6 MHz for light tuned far from this region (|ω. ω0|>> ω0. ω1). However, we are discussing here light tuned very close to the 780 nm resonance (|ω. ω0|<< ω0. ω1), for which the lower-frequency resonance can be overlooked.
  32. F. J. García de Abajo, "Interaction of radiation and fast electrons with clusters of dielectrics: A multiple scattering approach," Phys. Rev. Lett. 82, 2776-2779 (1999). [CrossRef]
  33. F. J. García de Abajo, "Momentum transfer to small particles by passing electron beams," Phys. Rev. B 70, 115422 (2004). [CrossRef]
  34. A. Ashkin and J. M. Dziedzic, "Optical levitation in high vacuum," Appl. Phys. Lett. 28, 333-335 (1976). [CrossRef]
  35. B. T. Draine, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophys. J. 333, 848-872 (1988). [CrossRef]
  36. W. H. Weber and G. W. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited