OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 18 — Sep. 3, 2007
  • pp: 11117–11125

Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns

N. Kanda, K. Konishi, and M. Kuwata-Gonokami  »View Author Affiliations


Optics Express, Vol. 15, Issue 18, pp. 11117-11125 (2007)
http://dx.doi.org/10.1364/OE.15.011117


View Full Text Article

Enhanced HTML    Acrobat PDF (2364 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate polarization rotation of a terahertz (THz) electromagnetic wave by using two-dimensional gratings consisting of two displaced layers of gold film with complimentary chiral patterns with four-fold symmetry. We develop a time domain THz polarimetry method with three wire grid polarizers and distinguish optical activity from optical anisotropy. We obtain the isotropic polarization rotation of a terahertz wave free from the birefringence of the structures. Results indicate the possibility of controlling THz polarization with artificial chiral structures fabricated with thin metal films.

© 2007 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(230.3990) Optical devices : Micro-optical devices
(240.6680) Optics at surfaces : Surface plasmons
(300.6270) Spectroscopy : Spectroscopy, far infrared

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 28, 2007
Revised Manuscript: August 10, 2007
Manuscript Accepted: August 11, 2007
Published: August 20, 2007

Citation
N. Kanda, K. Konishi, and M. Kuwata-Gonokami, "Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns," Opt. Express 15, 11117-11125 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11117


Sort:  Year  |  Journal  |  Reset  

References

  1. D. M. Mittleman, J. Cunningham, M. C. Nuss, and M. Geva, "Noncontact semiconductor wafer characterization with the terahertz Hall effect," Appl. Phys. Lett. 71, 16-18 (1997). [CrossRef]
  2. M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, "Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy," Chem. Phys. Lett. 332, 389-395 (2000). [CrossRef]
  3. N. Nagai, R. Kumazawa, and R. Fukuyama, "Direct evidence of inter-molecular vibrations by THz spectroscopy," Chem. Phys. Lett. 413, 495-500 (2005). [CrossRef]
  4. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2003). [CrossRef]
  5. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Laser," Science 264, 553-556 (1994). [CrossRef] [PubMed]
  6. T. Hofmann, U. Schade, C. M. Herzinger, P. Esquinazi, and M. Schubert, "Terahertz magneto-optic generalized ellipsometry using synchrotron and blackbody radiation," Rev. Sci. Instrum. 77, 063902 (2006). [CrossRef]
  7. B. Parks, S. Spielman, and J. Orenstein, "High-frequency Hall effect in the normal state of YBa2Cu3O7," Phys. Rev. B 56, 115-117 (1997). [CrossRef]
  8. K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, "Terahertz Time-Domain Spectroscopy of Amino Acids and Polypeptides," Biophys. J, L22-L24 (2005). [CrossRef] [PubMed]
  9. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H Linfield, and M. Pepper, "Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue," Physics in Medicine and Biology 47, 3853-3863 (2002). [CrossRef] [PubMed]
  10. R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, "Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs," Appl. Phys. Lett. 81, 199-201 (2002). [CrossRef]
  11. Y. Ino, R. Shimano, Yu. P. Svirko and M. Kuwata-Gonokami, "Terahertz time domain magneto-optical ellipsometry in reflection geometry," Phys. Rev. B 70, 155101 (2004). [CrossRef]
  12. N. C. J. van der Valk, W. A. M. van der Marel, and P. C. M. Planken, "Terahertz polarization imaging" Opt. Lett. 30, 2802-2804 (2005). [CrossRef] [PubMed]
  13. P. Yeh, "A new optical model for wire grid polarizers," Opt. Commun. 26, 289-292 (1978). [CrossRef]
  14. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006). [CrossRef] [PubMed]
  15. H.-T. Chen, J. F. O'Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, "Complementary planar terahertz metamaterials," Opt. Express. 15, 1084-1095 (2007). [CrossRef] [PubMed]
  16. F. Miyamaru, and M. Hangyo, "Strong optical activity in chiral metamaterials of metal screw hole arrays," Appl. Phys. Lett. 89, 211105 (2006). [CrossRef]
  17. A. Papakostas, A. Potts, D.M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical Manifestations of Planar Chirality," Phys. Rev. Lett. 90, 107404 (2003). [CrossRef] [PubMed]
  18. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure," Phys. Rev. Lett. 97, 177401 (2006). [CrossRef] [PubMed]
  19. M. Decker, M. W. Klein, M. Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett. 32, 856-858 (2007). [CrossRef] [PubMed]
  20. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant Optical Activity in Quasi-Two-Dimensional Planar Nanostructures," Phys. Rev. Lett. 95, 227401 (2005). [CrossRef] [PubMed]
  21. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004). [CrossRef] [PubMed]
  22. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter 10, 4785-4809 (1998). [CrossRef]
  23. K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, "Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings," Opt. Express. 15, 9575-9583 (2007). [CrossRef] [PubMed]
  24. A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, "Terahertz optical rectification from <110> zinc-blende crystals," Appl. Phys. Lett. 64, 1324-1326 (1993). [CrossRef]
  25. Q. Wu, and X.-C. Zhang, "Ultrafast electro-optic field sensors," Appl. Phys. Lett. 68, 1604-1606 (1996). [CrossRef]
  26. F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, "Large polarization change in two-dimensional metallic photonic crystals in subterahertz region," Appl. Phys. Lett. 82, 2568-2570 (2003). [CrossRef]
  27. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007). [CrossRef]
  28. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1975) 2nd Edition.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited