OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 18 — Sep. 3, 2007
  • pp: 11133–11141

Electromagnetic cloaking by layered structure of homogeneous isotropic materials

Ying Huang, Yijun Feng, and Tian Jiang  »View Author Affiliations

Optics Express, Vol. 15, Issue 18, pp. 11133-11141 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1326 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Electromagnetic invisibility cloak requires material with anisotropic distribution of the constitutive parameters as first proposed by Pendry et al. [Science 312, 1780 (2006)]. In this paper, we proposed an electromagnetic cloak structure that does not require metamaterials with subwavelength structured inclusions to realize the anisotropy or inhomogeneity of the material parameters. We constructed a concentric layered structure of alternating homogeneous isotropic materials that can be treated as an effective medium with the required radius-dependent anisotropy. With proper design of the permittivity or the thickness ratio of the alternating layers, we demonstrated the low-reflection and power-flow bending properties of the proposed cloaking structure through rigorous analysis of the scattered electromagnetic fields. The proposed cloaking structure could be possibly realized by normal materials, therefore may lead to a practical path to an experimental demonstration of electromagnetic cloaking, especially in the optical range.

© 2007 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(230.0230) Optical devices : Optical devices
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Physical Optics

Original Manuscript: July 18, 2007
Revised Manuscript: August 14, 2007
Manuscript Accepted: August 17, 2007
Published: August 21, 2007

Ying Huang, Yijun Feng, and Tian Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Opt. Express 15, 11133-11141 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  2. A. Alu and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623 (2005). [CrossRef]
  3. U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006). [CrossRef] [PubMed]
  4. D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794-9840 (2006). [CrossRef] [PubMed]
  5. S. A. Cummer, B-I Popa, D. Schurig, D. R. Smith and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006). [CrossRef]
  6. F. Zolla, S. Guenneau, A. Nicolet and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Opt. Lett. 32, 1069-1071 (2007). [CrossRef] [PubMed]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith. "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006). [CrossRef] [PubMed]
  8. W. Cai U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics,  1, 224-227 (2007). [CrossRef]
  9. G.W. Milton and N. A. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. London A 462, 3027-3059 (2006). [CrossRef]
  10. B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system." Phys. Rev. B 74, 115116 (2006). [CrossRef]
  11. A. A. Govyadinov and V. A. Podolskiy, "Metamaterial photonic funnels for subdiffraction light compression and propagation," Phys. Rev. B 73, 155108 (2006). [CrossRef]
  12. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical Hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006). [CrossRef] [PubMed]
  13. A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations." Phys. Rev. B 74, 075103 (2006). [CrossRef]
  14. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects." Science 315, 1699-1701 (2007). [CrossRef]
  15. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, "Magnifying superlens in the visible frequency range." Science 315, 1699-1701 (2007). [CrossRef] [PubMed]
  16. R. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1961).
  17. J. C. Monzon, "On the application of Sommerfeld representation in a two-dimensional rotationally invariant anisotropic medium." IEEE Trans.Antennas and Propag. 38, 1028-1034 (1990). [CrossRef]
  18. C. Bohren and D. Huffmann, Absorption and Scattering of Light by Small Particles (John Wiley, New York, 1983).
  19. J. D. Jackson, Classical electrodynamics, (John Wiley, New York, 1999).
  20. J. Gómez Rivas, C. Janke, P. Bolivar, and H. Kurz, "Transmission of THz radiation through InSb gratings of subwavelength apertures," Opt. Express 13, 847-859 (2005). [CrossRef] [PubMed]
  21. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  22. N. Garcia, E. V. Ponizovskaya, and J. Q. Xiao, "Zero permittivity materials: Band gaps at the visible," Appl. Phys. Lett. 80, 1120-1122 (2002). [CrossRef]
  23. N. Garcia, E. V. Ponizowskaya, H. Zhu, J. Q. Xiao, and A. Pons, "Wide photonic band gaps at the visible in metallic nanowire arrays embedded in a dielectric matrix," Appl. Phys. Lett. 82, 3147-3149 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3759 KB)     
» Media 2: MOV (3761 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited