OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 18 — Sep. 3, 2007
  • pp: 11241–11248

LD light antisqueezing through fiber propagation in reflection-type interferometer

Tatsuya Tomaru  »View Author Affiliations

Optics Express, Vol. 15, Issue 18, pp. 11241-11248 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (528 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Antisqueezed light is a possible resource to apply quantum information technologies to the real world. When antisqueezed light is used in secure optical communications, an LD is a preferable light source from an engineering point of view. Although LD output power is low, LD light can be antisqueezed with the help of an EDFA in a reflection-type interferometer consisting of a standard single-mode fiber of typically 5 km. The ellipticity of the obtained antisqueezed light was 9 at maximum in a balanced interferometer case, and the angle that was subtended by antisqueezed fluctuations at the origin of phase space was 23° at maximum. The feasibility of secure optical communications using antisqueezed light is demonstrated.

© 2007 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5330) Nonlinear optics : Photorefractive optics
(190.5650) Nonlinear optics : Raman effect
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(270.6570) Quantum optics : Squeezed states

ToC Category:
Quantum Optics

Original Manuscript: June 18, 2007
Revised Manuscript: August 2, 2007
Manuscript Accepted: August 3, 2007
Published: August 21, 2007

Tatsuya Tomaru, "LD light antisqueezing through fiber propagation in reflection-type interferometer," Opt. Express 15, 11241-11248 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (India, 1984), pp. 175-179.
  2. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum states via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993). [CrossRef] [PubMed]
  3. P. W. Shor, "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer," SIAM J. Comput. 26, 1484-1509 (1997). [CrossRef]
  4. L. K. Grover, "Quantum mechanics helps in searching for a needle in a haystack," Phys. Rev. Lett. 79, 325-328 (1997). [CrossRef]
  5. T. Tomaru and M. Ban, "Secure optical communication using antisqueezing," Phys. Rev. A 74, 032312 (2006). [CrossRef]
  6. G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, "Secure communication using mesoscopic coherent states," Phys. Rev. Lett. 90, 227901 (2003). [CrossRef] [PubMed]
  7. M. Shirasaki and H. A. Haus, "Squeezing of pulses in a nonlinear interferometer," J. Opt. Soc. Am. B 7, 30-34 (1990). [CrossRef]
  8. M. J. Werner, "Quantum soliton generation using an interferometer," Phys. Rev. Lett. 81, 4132-4135 (1998). [CrossRef]
  9. N. Korolkova, G. Leuchs, R. Loudon, T. C. Ralph, and C. Silberhorn, "Polarization squeezing and continuous-variable polarization entanglement," Phys. Rev. A 65, 052306 (2002). [CrossRef]
  10. C. R. Doerr, I. Lyubomirsky, G. Lenz, J. Paye, H. A. Haus, and M. Shirasaki, "Optical squeezing with a short fiber," in Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 1993) paper QFF3.
  11. T. Tomaru, "Femtosecond pulse squeezing limited by stimulated Raman process in optical fibers," Opt. Commun. 273, 263-271 (2007). [CrossRef]
  12. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweeter, M. A. Krumbügel, and B. A. Richman, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 - 3295 (1997). [CrossRef]
  13. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, New York, 1995).
  14. H. A. Haus and C. X. Yu, "Soliton squeezing and the continuum," J. Opt. Soc. Am. B 17, 618-628 (2000). [CrossRef]
  15. K. Bergman, H. A. Haus, E. P. Ippen, and M. Shirasaki, "Squeezing in a fiber interferometer with a gigahertz pump," Opt. Lett. 19, 290-292 (1994). [CrossRef] [PubMed]
  16. D. J. Dougherty, F. X. Kärtner, H. A. Haus, and E. P. Ippen, "Measurement of the Raman gain spectrum of optical fibers," Opt. Lett. 20, 31-33 (1995). [CrossRef] [PubMed]
  17. R. H. Stolen, "Nonlinearity in fiber transmission," Proc. IEEE 68, 1232-1235 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited