OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 18 — Sep. 3, 2007
  • pp: 11255–11261

Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics

Ryo Yasuhara, Shigeki Tokita, Junji Kawanaka, Toshiyuki Kawashima, Hirofumi Kan, Hideki Yagi, Hoshiteru Nozawa, Takagimi Yanagitani, Yasushi Fujimoto, Hidetsugu Yoshida, and Masahiro Nakatsuka  »View Author Affiliations


Optics Express, Vol. 15, Issue 18, pp. 11255-11261 (2007)
http://dx.doi.org/10.1364/OE.15.011255


View Full Text Article

Enhanced HTML    Acrobat PDF (196 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

As the first demonstration of Faraday effect in a TGG ceramics, its Verdet constant at 1053 nm is evaluated to be 36.4 rad/Tm at room temperature which is same as that of the single crystal. In addition, the temperature dependence of Verdet constant is obtained experimentally. At liquid helium temperature, it is 87 times greater than that at room temperature.

© 2007 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.3820) Materials : Magneto-optical materials
(230.2240) Optical devices : Faraday effect

ToC Category:
Materials

History
Original Manuscript: June 21, 2007
Revised Manuscript: August 2, 2007
Manuscript Accepted: August 3, 2007
Published: August 21, 2007

Citation
Ryo Yasuhara, Shigeki Tokita, Junji Kawanaka, Toshiyuki Kawashima, Hirofumi Kan, Hideki Yagi, Hoshiteru Nozawa, Takagimi Yanagitani, Yasushi Fujimoto, Hidetsugu Yoshida, and Masahiro Nakatsuka, "Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics," Opt. Express 15, 11255-11261 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11255


Sort:  Year  |  Journal  |  Reset  

References

  1. A. M. Korsunsky, J. Liu, D. Laundy, M. Golshan, and K. Kim, "Residual elastic strain due to laser shock peening," J. Strain Anal. 41, 113-120 (2006). [CrossRef]
  2. D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer and E. E. B. Campbell, "Laser processing of sapphire with picosecond and sub-picosecond pulses," Appl. Surf. Sci. 120, 65-80 (1997). [CrossRef]
  3. K. Nawata, Y. Ojima, M. Okida, T. Ogawa, and T. Omatsu, "Power scaling of a pico-second Nd:YVO4 master-oscillator power amplifier with a phase-conjugate mirror," Opt. Express 14, 10657-10662 (2006). [CrossRef] [PubMed]
  4. M. I. K. Santala, M. Zepf, F. N. Beg, E. L. Clark, A. E. Dangor, K. Krushelnick, M. Tatarakis, I. Watts, K. W. D. Ledingham, T. McCanny, I. Spencer, A. C. Machacek, R. Allott, R. J. Clarke and P. A. Norreys, "Production of radioactive nuclides by energetic protons generated from intense laser-plasma interactions," Appl. Phys. Lett. 78, 19-21 (2001). [CrossRef]
  5. J. D. Kmetec, C. L. Gordon, III, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, "MeV x-ray generation with a femtosecond laser," Phys. Rev. Lett. 68, 1527-1530 (1992). [CrossRef] [PubMed]
  6. N. Miyanaga, H. Azechi, K.A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa and K. Mima, "10-kJ PW laser for the FIREX-I program," in Inertial Fusion Sciences and Applications 2005, J.-C. Gauthier, et al., ed., (EDP sciences, Les Ulis cedex A, France, 2006), pp. 81-87.
  7. W. F. Krupke, "Solid State Laser Driver for an ICF Reactor," Fusion Technol. 15, 377-382 (1989).
  8. T. Kawashima, T. Kanabe, H. Matsui, E. Eguchi, M. Yamanaka, Y. Kato, M. Nakatsuka, Y. Izawa, S. Nakai, T. Kanzaki and H. Kan,"Design and Performance of a Diode-Pumped Nd:Silica-Phosphate Glass Zig-Zag Slab Laser Amplifier for Inertial Fusion Energy," Jpn. J. Appl. Phys. 40, 6415-6425 (2001). [CrossRef]
  9. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, "Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wave-front sensor," Appl. Opt. 40, 366-374 (2001). [CrossRef]
  10. H. Seito, M. Kawase and M. Saito, "Temperature dependence of the Faraday effect in As-S glass fiber," Appl. Opt. 24, 2300-2302 (1985). [CrossRef] [PubMed]
  11. J. Ballato and E. Snitzer, "Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications," Appl. Opt. 34, 6848-6854 (1995). [CrossRef] [PubMed]
  12. T. Shintaku and T. Uno, "Optical waveguide isolator based on nonreciprocal radiation," J. Appl. Phys. 76, 8155- 8159 (1994). [CrossRef]
  13. V. I. Chani, A. Yoshikawa, H. Machida, T. Satoh and T. Fukuda, "Growth of Tb3 Ga5 O12 fiber and bulk crystals using micro-pulling-down apparatus," J. Cryst. Growth 210, 663-669 (2000). [CrossRef]
  14. J. A. Davis and R. M. Bunch, "Temperature dependence of the Faraday rotation of Hoya FR-5 glass," Appl. Opt. 23, 633-636 (1984). [CrossRef] [PubMed]
  15. M. Y. A. Raja, D. Allen, and W. Sisk, "Room-temperature inverse Faraday effect in terbium gallium garnet," Appl. Phys. Lett. 67, 2123-2125 (1995). [CrossRef]
  16. Northrop Grumman, TGG data sheet. (2006). http://www.st.northropgrumman.com/synoptics/products/specialty/TGG.html>
  17. A. A. Kaminskii, H. J. Eichler, P. Reiche, and R. Uecker, "SRS risk potential in Faraday rotator Tb3Ga5O12 Crystals for high-peak power lasers," Laser Phys. Lett. 2, 489-492 (2005). [CrossRef]
  18. R. Wynands, F. Diedrich, D. Meschede, and H. R. Telle, "A compact tunable 60-dB Faraday optical isolator for the near infrared," Rev. Sci. Instrum. 63, 5586-5590 (1992). [CrossRef]
  19. E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, "Compensation of thermally induced modal distortions in Faraday isolators," IEEE J. Quantum Electron. 40, 1500-1510 (2004). [CrossRef]
  20. G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, D. B. Tanner, "Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers," Class. Quantum Grav. 19, 1793-1801 (2002). [CrossRef]
  21. X. Chen, R. Galemezuk, B. Salce, B. Lavorel, C. Akir, and L. Rajaonah, "Long-transient conoscopic pattern technique," Solid State Commun. 110, 431-434 (1999). [CrossRef]
  22. G. A. Slack and D. W. Oliver, "Thermal conductivity of garnets and phonon scattering by rareearth ions," Phys. Rev. B 4, 592-609 (1971). [CrossRef]
  23. E. A. Khazanov, "Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers," Proc. SPIE 4968, 115-126, (2003). [CrossRef]
  24. M. A. Kagan and E. A. Khazanov, "Thermally Induced Birefringence in Faraday Devices Made from Terbium Gallium Garnet-Polycrystalline Ceramics," Appl. Opt. 43, 6030-6039 (2004). [CrossRef] [PubMed]
  25. T. Yanagitani, H. Yagi, and M. Ichikawa, Japanese Patent, 10-101333 (1998).
  26. T. Yanagitani, H. Yagi, and M. Ichikawa, Japanese Patent, 10-101411 (1998).
  27. J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, and A. A. Kaminskii, "110 W ceramic Nd3+:Y3Al5O12 laser," Appl. Phys. B 79, 25-28 (2004). [CrossRef]
  28. J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda and Y. Izawa, "Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature," Laser Phys. 15, 1306-1312 (2005).
  29. S. Tokita, J. Kawanaka, Y. Izawa, M. Fujita, and T. Kawashima, "23.7-W picosecond cryogenic-Yb:YAG multipass amplifier," Opt. Express 15, 3955-3961 (2007). [CrossRef] [PubMed]
  30. J. Kawanaka, H. Nishioka, N. Inoue, and K. Ueda, "Tunable continuous-wave Yb:YLF laser operation with a diode-pumped chirped-pulse amplification system," Appl. Opt. 40, 3542-3546 (2001). [CrossRef]
  31. J. Kawanaka, K. Yamakawa, H Nishioka, and K. Ueda, "30mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier," Opt. Lett. 28, 2121-2123 (2003). [CrossRef] [PubMed]
  32. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, "165-W cryogenically cooled Yb:YAG laser," Opt. Lett. 29, 2154-2156 (2004). [CrossRef] [PubMed]
  33. N. P. Barnes and L. B. Petway, "Variation of the Verdet constant with temperature of terbium gallium garnet," J. Opt. Soc. Am. B 9, 1912-1915 (1992). [CrossRef]
  34. D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, "Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K," Quantum Electron. 36, 383-388 (2006). [CrossRef]
  35. J. H. Van Vleck and M. H. Hebb, "On the paramagnetic rotation of Tysonite," Phys. Rev. 46, 17 - 32 (1934). [CrossRef]
  36. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1971).
  37. E. Hecht, Optics (Addison Wesley, San Francisco, 2002) 4th ed., Chap. 8, p. 333.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited