OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 18 — Sep. 3, 2007
  • pp: 11413–11426

Photonic bandgap fiber-based Surface Plasmon Resonance sensors

Bertrand Gauvreau, Alireza Hassani, Majid Fassi Fehri, Andrei Kabashin, and Maksim Skorobogatiy  »View Author Affiliations


Optics Express, Vol. 15, Issue 18, pp. 11413-11426 (2007)
http://dx.doi.org/10.1364/OE.15.011413


View Full Text Article

Enhanced HTML    Acrobat PDF (1425 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The concept of photonic bandgap fiber-based surface plasmon resonance sensor operating with low refractive index analytes is developed. Plasmon wave on the surface of a thin metal film embedded into a fiber microstructure is excited by a leaky Gaussian-like core mode of a fiber. We demonstrate that by judicious design of the photonic crystal reflector, the effective refractive index of the core mode can be made considerably smaller than that of the core material, thus enabling efficient phase matching with a plasmon, high sensitivity, and high coupling efficiency from an external Gaussian source, at any wavelength of choice from the visible to near-IR. To our knowledge, this is not achievable by any other traditional sensor design. Moreover, unlike the case of total internal reflection waveguide-based sensors, there is no limitation on the upper value of the waveguide core refractive index, therefore, any optical materials can be used in fabrication of photonic bandgap fiber-based sensors. Based on numerical simulations, we finally present designs using various types of photonic bandgap fibers, including solid and hollow core Bragg fibers, as well as honeycomb photonic crystal fibers. Amplitude and spectrum based methodologies for the detection of changes in the analyte refractive index are discussed. Furthermore, sensitivity enhancement of a degenerate double plasmon peak excitation is demonstrated for the case of a honeycomb fiber. Sensor resolutions in the range 7·10-6-5·10-5RIU were demonstrated for an aqueous analyte.

© 2007 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(130.6010) Integrated optics : Sensors
(230.1480) Optical devices : Bragg reflectors
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 12, 2007
Revised Manuscript: August 22, 2007
Manuscript Accepted: August 22, 2007
Published: August 24, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Bertrand Gauvreau, Alireza Hassani, Majid Fassi Fehri, Andrei Kabashin, and Maksim A. Skorobogatiy, "Photonic bandgap fiber-based Surface Plasmon Resonance sensors," Opt. Express 15, 11413-11426 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11413


Sort:  Year  |  Journal  |  Reset  

References

  1. V. M. Agranovich and D. L. Mills, Surface Polaritons - ElectromagneticWaves at Surfaces and Interfaces, (North- Holland, Amsterdam, 1982).
  2. E. Kretschmann and H. Raether, "Radiative decay of non radiative surface plasmons excited by light," Naturforschung A 23, 2135 (1968).
  3. B. Liedberg, C. Nylander, I. Lundstrom, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators B 4, 299 (1983). [CrossRef]
  4. J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212 (1996). [CrossRef]
  5. L.M. Zhang and D. Uttamchandani, "Optical chemical sensing employing surface plasmon resonance," Electron. Lett. 23, 1469 (1988). [CrossRef]
  6. A. V. Kabashin and P. Nikitin, "Surface plasmon resonance interferometer for bio- and chemical-sensors," Opt. Commun. 150, 5 (1998). [CrossRef]
  7. A. N. Grigorenko, P. Nikitin, and A. V. Kabashin, "Phase jumps and interferometric surface plasmon resonance imaging," Appl. Phys. Lett. 75, 3917 (1999). [CrossRef]
  8. M. B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Garces and J. Mateo, "Determination of probable alcohol yield in musts by means of an SPR optical sensor," Sens. Actuators B 11, 455 (1993). [CrossRef]
  9. R. Alonso, J. Subias, J. Pelayo, F. Villuendas, J. Tornos, "Single-mode, optical fiber sensors and tunable wavelength filters based on the resonant excitation of metal-clad modes," Appl. Opt. 33, 5197 (1994). [CrossRef] [PubMed]
  10. J. Homola, "Optical fiber sensor based on surface plasmon resonance excitation," Sens. Actuators B 29, 401 (1995). [CrossRef]
  11. A. J. C. Tubb, F. P. Payne, R. B. Millington, and C. R. Lowe, "Single-mode optical fibre surface plasma wave chemical sensor," Sens. Actuators B 41, 71 (1997). [CrossRef]
  12. J. Homola, R. Slavik, J. Ctyroky, "Intreaction between fiber modes and surface plasmon wave: spectral properties," Opt. Lett. 22, 1403 (1997). [CrossRef]
  13. A. Diez, M. V. Andres, J. L. Cruz, "In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers," Sens. Actuators B 73, 95 (2001). [CrossRef]
  14. M. Piliarik, J. Homola, Z. Manikova, J. Ctyroky, "Surface plasmon resonance based on a polarization-maintaining optical fiber," Sens. Actuators B 90, 236 (2003). [CrossRef]
  15. D. Monzon-Hernandez, J. Villatoro, D. Talavera, D. Luna-Moreno, "Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks," Appl. Opt. 43, 1216 (2004). [CrossRef] [PubMed]
  16. D. Monzon-Hernandez and J. Villatoro, "High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor," Sens. Actuators B 115, 227 (2006). [CrossRef]
  17. H. Suzuki, M. Sugimoto, Y. Matsuiand, J. Kondoh, "Fundamental characteristics of a dual-colour fibre optic SPR sensor," Meas. Sci. Technol. 17, 1547 (2006). [CrossRef]
  18. J. Ctyroky, F. Abdelmalek, W. Ecke, K. Usbeck, "Modelling of the surface plasmon resonance waveguide sensor with Bragg grating," Opt. Quantum Electron. 31, 927 (1999). [CrossRef]
  19. S.J. Al-Bader andM. Imtaar, "Optical fiber hybrid-surface plasmon polaritons," J. Opt. Soc. Am. B 10, 83 (1993). [CrossRef]
  20. R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," Sens. Actuators B 12, 213 (1993). [CrossRef]
  21. A. Trouillet, C. Ronot-Trioli, C. Veillas, H. Gagnaire, "Chemical sensing by surface plasmon resonance in a multimode optical fibre," Pure Appl. Opt. 5, 227 (1996). [CrossRef]
  22. J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66 (1999). [CrossRef]
  23. M. Weisser, B. Menges, and S. Mittler-Neher, "Refractive index and thickness determination of monolayers by plasmons," Sens. Actuators B 56, 189 (1999). [CrossRef]
  24. B. D. Gupta and A. K. Sharma, "Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study," Sens. Actuators B 107, 40 (2005). [CrossRef]
  25. B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, "Multipole analysis of photonic crystal fibers with coated inclusions," Opt. Express 14, 10851-10864 (2006) [CrossRef] [PubMed]
  26. A. Hassani and M. Skorobogatiy, "Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics," Opt. Express 14, 11616-11621 (2006) [CrossRef] [PubMed]
  27. A. Hassani, M. Skorobogatiy, "Design criteria for the Microstructured Optical Fiber-based Surface Plasmon Resonance sensors," accepted for publication in the J. Opt. Soc. Am. B, February (2007).
  28. M. Skorobogatiy and A. Kabashin, "Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide," Opt. Express 14, 8419 (2006) [CrossRef] [PubMed]
  29. M. Skorobogatiy, A. Kabashin, "Photon crystal waveguide-based surface plasmon resonance biosensor," Appl. Phys. Lett. 89, 211641 (2006) [CrossRef]
  30. C. P. Lavers and J.S. Wilkinson, "A waveguide-coupled surface-plasmon sensor for an aqueous environment," Sens. Actuators B 22, 75 (1994). [CrossRef]
  31. R. Harris and J. S. Wilkinson, "Waveguide surface plasmon resonance sensors," Sens. Actuators B 29, 261 (1995). [CrossRef]
  32. M. N. Weiss, R. Srivastava, and H. Grogner, "Experimental investigation of a surface plasmon-based integratedoptic humidity sensor," Electron. Lett. 32, 842 (1996). [CrossRef]
  33. J. Homola, J. Ctyroky, M. Skalky, J. Hradiliva, and P. Kolarova, "A surface plasmon resonance based integrated optical sensor," Sens. Actuators B 39, 286 (1997). [CrossRef]
  34. J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8 (2001). [CrossRef]
  35. A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, "Phase interrogation of an integrated optical SPR sensor," Sens. Actuators B 97, 114 (2004). [CrossRef]
  36. Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, "Consecutive Solvent Evaporation and Co-Rolling Techniques for Polymer Multilayer Hollow Fiber Preform Fabrication," J. Mat. Res. 21, 2246-2254 (2006) [CrossRef]
  37. M. Skorobogatiy, "Efficient anti-guiding of TE and TM polarizations in low index core waveguides without the need of omnidirectional reflector," Opt. Lett. 30, 2991 (2005) [CrossRef] [PubMed]
  38. T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, "Dispersion tailoring and compensation by modal interactions in OmniGuide fibers," Opt. Express 11, 1175-1198 (2003) [CrossRef] [PubMed]
  39. T. Murao, K. Saitoh, and M. Koshiba, "Design of air-guiding modified honeycomb photonic band-gap fibers for effectively single mode operation," Opt. Express 14, 2404-2412 (2006). [CrossRef] [PubMed]
  40. S. E. Barkou, J. Broeng, and A. Bjarklev, "Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect," Opt. Lett. 24, 46-49 (1999). [CrossRef]
  41. J. Homola, S. S. Yee and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Act. B 54, 3-15 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited