OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 18 — Sep. 3, 2007
  • pp: 11444–11465

Understanding laser stabilization using spectral hole burning

B. Julsgaard, A. Walther, S. Kröll, and L. Rippe  »View Author Affiliations


Optics Express, Vol. 15, Issue 18, pp. 11444-11465 (2007)
http://dx.doi.org/10.1364/OE.15.011444


View Full Text Article

Enhanced HTML    Acrobat PDF (866 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

There have recently been several studies of the performance of laser frequency stabilization using spectral holes in solids, instead of an external cavity, as a frequency reference. Here an analytical theory for Pound-Drever-Hall laser frequency stabilization using spectral hole-burning is developed. The interaction between the atomic medium and the phase modulated light is described using a linearized model of the Maxwell-Bloch equations. The interplay between the carrier and modulation sidebands reveals significant differences from the case of locking to a cavity. These include a different optimum modulation index, an optimum sample absorption, and the possibility to lock the laser in an inherent linear frequency drift mode. Spectral holes in solids can be permanent or transient. For the materials normally used, the dynamics and time scales of transient holes often depend on population relaxation processes between ground state hyperfine levels. These relaxation rates can be very different for different solid state materials. We demonstrate, using radio-frequency pumping, that the hyperfine population dynamics may be controlled and tailored to give optimum frequency stabilization performance. In this way also materials with initially non-optimum performance can be used for stabilization. The theoretical predictions regarding the inherent linear frequency drift is compared to experimental data from a dye laser stabilized to a spectral hole in a Pr3+:Y2SiO5 crystal.

© 2007 Optical Society of America

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(270.3430) Quantum optics : Laser theory
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 25, 2007
Revised Manuscript: August 17, 2007
Manuscript Accepted: August 19, 2007
Published: August 24, 2007

Citation
B. Julsgaard, A. Walther, S. Kröll, and L. Rippe, "Understanding laser stabilization using spectral hole burning," Opt. Express 15, 11444-11465 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11444


Sort:  Year  |  Journal  |  Reset  

References

  1. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983). [CrossRef]
  2. E. D. Black, "An introduction to Pound-Drever-Hall laser frequency stabilization," Am. J. Phys. 69, 79-87 (2001). [CrossRef]
  3. P. B. Sellin, N.M. Strickland, J. L. Carlsten, and R. L. Cone, "Programmable frequency reference for subkilohertz laser stabilization by use of persistent spectral hole burning," Opt. Lett. 24, 1038-1040 (1999). [CrossRef]
  4. N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, "Laser frequency stabilization using regenerative spectral hole burning," Phys. Rev. B 62, 1473-1476 (2000). [CrossRef]
  5. G. J. Pryde, T. Böttger, and R. L. Cone, "Numerical modeling of laser stabilization by regenerative spectral hole burning," J. Lumin. 94-95, 587-591 (2001). [CrossRef]
  6. G. J. Pryde, T. Böttger, R. L. Cone, and R. C. C . Ward, "Semiconductor lasers stabilized to spectral holes in rare earth crystals to a part in 10(13) and their application to devices and spectroscopy," J. Lumin. 98, 309-315 (2002). [CrossRef]
  7. P. B. Sellin, N. M. Strickland, T. Böttger, J. L. Carlsten, and R. L. Cone, "Laser stabilization at 1536 nm using regenerative spectral hole burning," Phys. Rev. B 63, 155111 (2001). [CrossRef]
  8. T . Böttger, Y. Sun, G. J. Pryde, G. Reinemer, and R. L. Cone, "Diode laser frequency stabilization to transient spectral holes and spectral diffusion in Er3+:Y2SiO5 at 1536 nm," J. Lumin. 94, 565-568 (2001). [CrossRef]
  9. T. Böttger, G. J . Pryde, and R. L . Cone, "Programmable laser frequency stabilization at 1523 nm by use of persistent spectral hole burning," Opt. Lett. 28, 200-202 (2003). [CrossRef] [PubMed]
  10. K. D. Merkel, R. D. Peters, P. B. Sellin, K. S. Repasky, and W. R. Babbitt, "Accumulated programming of a complex spectral grating," Opt. Lett. 25, 1627-1629 (2000). [CrossRef]
  11. R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, "Ultraslow optical dephasing in Eu3+:Y2SiO5, " Phys. Rev. Lett. 72, 2179-2181 (1994). [CrossRef] [PubMed]
  12. N. Ohlsson, R. K. Mohan, and S. Kroll, "Quantum computer hardware based on rare-earth-ion-doped inorganic crystals," Opt. Commun. 201, 71-77 (2002). [CrossRef]
  13. I. Roos and K. Mølmer, "Quantum computing with an inhomogeneously broadened ensemble of ions: Suppression of errors from detuning variations by specially adapted pulses and coherent population trapping," Phys. Rev. A 69, 022321 (2004). [CrossRef]
  14. J. J. Longdell and M. J. Sellars, "Experimental demonstration of quantum-state tomography and qubit-qubit interactions for rare-earth-metal-ion-based solid-state qubits," Phys. Rev. A 69, 032307 (2004). [CrossRef]
  15. J. J. Longdell, M. J. Sellars, and N. B. Manson, "Demonstration of conditional quantum phase shift between ions in a solid," Phys. Rev. Lett. 93, 130503 (2004). [CrossRef] [PubMed]
  16. J. H. Wesenberg, K. Mølmer, L. Rippe, and S. Kr¨oll, "Scalable designs for quantum computing with rare-earthion- doped crystals," Phys. Rev. A 75, 012304 (2007). [CrossRef]
  17. L. Rippe, B. Julsgaard, A. Walther, and S. Kroll, "Laser stabilization using spectral hole burning," http://arxiv.org/abs/quant-ph/0611056.
  18. D. Allen and J. H. Eberly, Optical resonance and two-level atoms (Wiley, New York, 1975).
  19. P. W. Milonni and J. H. Eberly, Lasers (John Wiley & Sons, New York, 1988).
  20. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995).
  21. A. M. Stoneham, "Shapes of Inhomogeneously Broadened Resonance Lines in Solids," Rev. Mod. Phys. 41, 82 (1969). [CrossRef]
  22. J. H. Wesenberg and K. Mølmer, "Field Inside a Random Distribution of Parallel Dipoles," Phys. Rev. Lett. 93, 143903 (2004). [CrossRef] [PubMed]
  23. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, "Frequency modulation (FM) spectroscopy," Appl. Phys. B 32, 145-152 (1983). [CrossRef]
  24. T. Böttger, G. J.  Pryde, C. W. Thiel, and R. L. Cone, "Laser frequency stabilization at 1.5 microns using ultranarrow inhomogeneous absorption profiles in Er3+:LiYF4," J. Lumin. 127, 83-88 (2007). [CrossRef]
  25. L. Rippe, "Quantum computing with naturally trapped sub-nanometre-spaced ions," Ph.D. thesis, Division of Atomic Physics, LTH, P.O. Box 118, SE 221 00 Lund (2006).
  26. "Laser stabilization system documentation," available at http://www.atom.fysik.lth.se/QI/.
  27. K. J. °Astrom and R. J. Murray, "Feedback Systems: An Introduction for Scientists and Engineers," preprint at http://www.cds.caltech.edu/ murray/amwiki/.
  28. F. Wolf, "Fast sweep experiments in microwave spectroscopy," J. Phys. D 27, 1774-1780 (1994). [CrossRef]
  29. T. Chang, M. Z. Tian, R. K. Mohan, C. Renner, K. D. Merkel, and W. R. Babbitt, "Recovery of spectral features readout with frequency-chirped laser fields," Opt. Lett. 30, 1129-1131 (2005). [CrossRef] [PubMed]
  30. M. Nilsson, L. Rippe, R. Klieber, D. Suter, and S. Kroll, "Holeburning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids, demonstrated in Pr3+:Y2SiO5, " Phys. Rev. B 70, 214116 (2004). [CrossRef]
  31. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited