OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 18 — Sep. 3, 2007
  • pp: 11472–11480

Emission spectrum of electromagnetic energy stored in a dynamically perturbed optical microcavity

Murray W. McCutcheon, Andras G. Pattantyus-Abraham, Georg W. Rieger, and Jeff F. Young  »View Author Affiliations


Optics Express, Vol. 15, Issue 18, pp. 11472-11480 (2007)
http://dx.doi.org/10.1364/OE.15.011472


View Full Text Article

Enhanced HTML    Acrobat PDF (1561 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An ultrafast pump-probe experiment is performed on wavelength-scale, silicon-based, optical microcavities that confine light in three dimensions with resonant wavelengths near 1.5 µm, and lifetimes on the order of 20 ps. A below-bandgap probe pulse tuned to overlap the cavity resonant frequency is used to inject electromagnetic energy into the cavity, and an above-bandgap pump pulse is used to generate free carriers in the silicon, thus altering the real and imaginary components of the cavity’s refractive index, and hence its resonant frequency and lifetime. When the pump pulse injects a carrier density of ~5×1017 cm-3before the resonant probe pulse strikes the sample, the emitted radiation from the cavity is blue-shifted by 16 times the bare cavity linewidth, and the new linewidth is 3.5 times wider than the original. When the pump pulse injects carriers, and thus suddenly perturbs the cavity properties after the probe pulse has injected energy into the cavity, we show that the emitted radiation is not simply a superposition of Lorentzians centred at the initial and perturbed cavity frequencies. Under these conditions, a simple model and the experimental results show that the power spectrum of radiation emitted by the stored electromagnetic energy when the cavity frequency is perturbed during ring-down consists of a series of coherent oscillations between the original and perturbed cavity frequencies, accompanied by a gradual decrease and broadening of the original cavity line, and the emergence of the new cavity resonance. The modified cavity lifetime is shown to have a significant impact on the evolution of the emission as a function of the pump-probe delay.

© 2007 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(270.6570) Quantum optics : Squeezed states
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Optical Devices

History
Original Manuscript: June 28, 2007
Revised Manuscript: August 14, 2007
Manuscript Accepted: August 15, 2007
Published: August 24, 2007

Citation
Murray W. McCutcheon, Andras G. Pattantyus-Abraham, Georg W. Rieger, and Jeff F. Young, "Emission spectrum of electromagnetic energy stored in a dynamically perturbed optical microcavity," Opt. Express 15, 11472-11480 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11472


Sort:  Year  |  Journal  |  Reset  

References

  1. B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005). [CrossRef]
  2. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]
  3. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003). [CrossRef] [PubMed]
  4. T. J. Johnson, M. Borselli, and O. Painter, "Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator," Opt. Express 14, 817-831 (2006). [CrossRef] [PubMed]
  5. P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005). [CrossRef] [PubMed]
  6. M. G. Banaee, A. G. Pattantyus-Abraham,M.W. McCutcheon, G.W. Rieger, and J. F. Young, "Efficient coupling of photonic crystal microcavity modes to a ridge waveguide," Appl. Phys. Lett. 90, 193106 (2007). [CrossRef]
  7. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photon. 1, 49-52 (2007). [CrossRef]
  8. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005). [CrossRef]
  9. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431,1081-1084 (2004). [CrossRef] [PubMed]
  10. I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vuˇckovi’c, "Ultrafast nonlinear optical tuning of photonic crystal cavities," Appl. Phys. Lett. 90, 091118 (2007). [CrossRef]
  11. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005). [CrossRef] [PubMed]
  12. A. R. Cowan, and J. F. Young, "Optical bistability involving photonic crystal microcavities and Fano line shapes," Phys. Rev. E 68, 046606 (2003). [CrossRef]
  13. M. Soljaˇci´c, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002).
  14. M. Notomi, and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803(R) (2006). [CrossRef]
  15. M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006). [CrossRef] [PubMed]
  16. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  17. F. Bassani, G. Iadonisi, and B. Preziosi, "Electronic impurity levels in semiconductors," Rep. Prog. Phys. 37, 1099-1210 (1974). [CrossRef]
  18. M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Fr’ed’erick, P. J. Poole, G. C. Aers, and R. L. Williams, "Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities," Appl. Phys. Lett. 87, 221110 (2005). [CrossRef]
  19. A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, "Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide," J. Lightwave Technol. 15, 505-518 (1997). [CrossRef]
  20. R. Graham, "Squeezing and frequency changes in harmonic oscillations," J. Mod. Opt. 34, 873-879 (1987). [CrossRef]
  21. C. Aslangul, "Sudden expansion or squeezing of a harmonic oscillator," Am. J. Phys. 63, 1021-1025 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited