OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 18 — Sep. 3, 2007
  • pp: 11553–11563

Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths

Arnaud Mussot, Maxime Beaugeois, Mohamed Bouazaoui, and Thibaut Sylvestre  »View Author Affiliations

Optics Express, Vol. 15, Issue 18, pp. 11553-11563 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (682 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically study broadband supercontinuum generation in photonic crystal fibers exhibiting two zero dispersion wavelengths and under continuous-wave pumping. We show that when the pump wavelength is located in between the zero-dispersion wavelengths, a wide and uniform spectral broadening is achieved through modulation instability, generation of both blue-shifted and red-shifted dispersive waves and subsequently through soliton self-frequency shift. This supercontinuum is therefore bounded by these two dispersive waves which allow the control of its bandwidth by a suitable tuning of the fiber dispersion. As a relevant example, we predict that broadband (1050–1600 nm) continuous-wave light can be generated in short lengths of microstructured fibers pumped by use of a 10-W Ytterbium fiber laser.

© 2007 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Nonlinear Optics

Original Manuscript: January 24, 2007
Revised Manuscript: April 2, 2007
Manuscript Accepted: April 4, 2007
Published: August 27, 2007

Arnaud Mussot, Maxime Beaugeois, Mohamed Bouazaoui, and Thibaut Sylvestre, "Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths," Opt. Express 15, 11553-11563 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. J. Dudley, G. Genty and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=RMPHAT000078000004001135000001&idtype=cvips&gifs=yes&citing=sci [CrossRef]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 27-27 (2000). http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-1-25 [CrossRef]
  3. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002) http://www.opticsinfobase.org/abstract.cfm?URI=josab-19-4-765 [CrossRef]
  4. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002) http://www.opticsinfobase.org/abstract.cfm?URI=josab-19-4-753 [CrossRef]
  5. G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, "Enhanced bandwidth of supercontinuum generated in microstructured fibers," Opt. Express 12, 3471-3480 (2004) [CrossRef] [PubMed]
  6. G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses," Opt. Express 12, 4614-4624 (2004) [CrossRef] [PubMed]
  7. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000) http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-19-1415 [CrossRef]
  8. A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, "Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchiplaser," Opt. Lett. 28, 1820-1822 (2003) http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-19-1820 [CrossRef] [PubMed]
  9. S. Kobtsev and S. Smirnov, "Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump," Opt. Express 13, 6912-6918 (2005) [CrossRef] [PubMed]
  10. F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005) [CrossRef] [PubMed]
  11. M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006) [CrossRef] [PubMed]
  12. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers," Opt. Express 12, 2838-2843 (2004) [CrossRef] [PubMed]
  13. A. K. Abeeluck, C. Headley, and C. G. Jørgensen, "High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser," Opt. Lett. 29, 2163-2165 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-18-2163 [CrossRef] [PubMed]
  14. T. Sylvestre, A. Vedadi, H. Maillotte, F. Vanholsbeeck, and S. Coen, "Supercontinuum generation using continuous-wave multiwavelength pumping and dispersion management," Opt. Lett. 31, 2036-2038 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-13-2036 [CrossRef] [PubMed]
  15. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers, " Opt. Lett. 28, 1353-1355 (2003) http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-15-1353 [CrossRef] [PubMed]
  16. J. C. Travers, S. V. Popov, J. R. Taylor, H. Sabert, and B. Mangan, "Extended Bandwidth CW-Pumped Infra-Red Supercontinuum Generation in Low Water-Loss PCF," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CFO4. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2005-CFO4
  17. W. Drexler, U. Morgner, F. X. Krtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "Invivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999) http://www.opticsinfobase.org/abstract.cfm?URI=ol-24-17-1221 [CrossRef]
  18. M. Koshiba and K. Saitoh, "Applicability of classical optical fiber theories to holey fibers," Opt. Lett. 29, 1739-1741 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-15-1739 [CrossRef] [PubMed]
  19. K. Saitoh and M. Koshiba, "Empirical relations for simple design of photonic crystal fibers," Opt. Express 13, 267-274 (2005) [CrossRef] [PubMed]
  20. G. P.  Agrawal, Nonlinear Fiber Optics, 3rd ed., (Academic Press, San Diego, CA, USA, 2001).
  21. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, "Raman response function of silica core fibers," J. Opt. Soc. Am. B,  6, 1159-1166, (1989). [CrossRef]
  22. O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, "Optimization of the Split-Step Fourier Method in Modeling Optical-Fiber Communications Systems," J. Lightwave Technol. 21, 61- (2003) http://www.opticsinfobase.org/abstract.cfm?URI=JLT-21-1-61 [CrossRef]
  23. B. Barviau, S. Randoux, and P. Suret, "Spectral broadening of a multimode continuous-wave optical field propagating in the normal dispersion regime of a fiber," Opt. Lett. 31, 1696-1698 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-11-1696 [CrossRef] [PubMed]
  24. S. B. Cavalcanti, G. P. Agrawal, and M. Yu, "Noise amplification in dispersive nonlinear media", Phys. Rev. A 51, 4086-4092 (1995). http://dx.doi.org/10.1103/PhysRevA.51.4086 [CrossRef] [PubMed]
  25. C. H. Henry,"Theory of the linewidth of SC Lasers," IEEE J. Quantum Electron. 18, 259-264 (1982). [CrossRef]
  26. N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995). [CrossRef] [PubMed]
  27. A. V. Husakou and J. Herrmann, "Supercontinuum generation, four wave mixing, and fission of higher-order solitons in photonic-crystal fibers," J. Opt. Soc. Am. B.,  19, 2171-2182 (2002). [CrossRef]
  28. Note that Fig. 3(e) represents the evolution of the SC spectrum versus the fiber length in logarithm scale. In order to obtain a clear figure, it is plotted from smoothed SC spectra by using the method described in Ref. [29]. One example of this smoothing method is represented in green on Fig. 3(d).
  29. http://www.nrbook.com/a/bookcpdf/c14-8.pdf
  30. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2902 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited