OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 18 — Sep. 3, 2007
  • pp: 11589–11594

Monolithic Bragg-locked Nd:GdVO4 laser

Ida Häggström, Björn Jacobsson, and Fredrik Laurell  »View Author Affiliations

Optics Express, Vol. 15, Issue 18, pp. 11589-11594 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (171 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a monolithic single-longitudinal-mode laser based on Nd:GdVO4 and a volume Bragg grating. The laser at 1066 nm had a bandwidth below 40 MHz at a power of 30 mW. With temperature, the laser frequency could be continuously tuned without mode hops over a range of 80 GHz. The demonstrated laser design is very compact and simple and can be used to lock the laser wavelength anywhere in the gain spectrum.

© 2007 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3570) Lasers and laser optics : Lasers, single-mode

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 28, 2007
Revised Manuscript: August 20, 2007
Manuscript Accepted: August 22, 2007
Published: August 28, 2007

Ida Häggström, Björn Jacobsson, and Fredrik Laurell, "Monolithic Bragg-locked Nd:GdVO4 laser," Opt. Express 15, 11589-11594 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. J. J. Zayhowski and A. Mooradian, "Single-frequency microchip Nd lasers," Opt. Lett. 14, 24-26 (1989). [CrossRef] [PubMed]
  2. B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity," Opt. Express 14, 9284-9292 (2006). [CrossRef] [PubMed]
  3. B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity: erratum," Opt. Express 15, 9387 (2007). [CrossRef] [PubMed]
  4. T. J. Kane and R. L. Byer, "Monolithic, unidirectional single-mode Nd:YAG ring laser," Opt. Lett. 10, 65-67 (1985). [CrossRef] [PubMed]
  5. O. Efimov, L. Glebov, L. Glebova, K. Richardson, and V. Smirnov, "High-efficiency Bragg gratings in photothermorefractive glass," Appl. Opt. 38, 619-627 (1999). [CrossRef]
  6. B. Volodin, S. Dolgy, E. Melnik, E. Downs, J. Shaw, and V. Ban, "Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings," Opt. Lett. 29, 1891-1893 (2004). [CrossRef] [PubMed]
  7. L. S. Meng, B. Nizamov, P. Madasamy, J. K. Brasseur, T. Henshaw, and D. K. Neumann, "High power 7-GHz bandwidth external-cavity diode laser array and its use in optically pumping singlet delta oxygen," Opt. Express  14, 10469-10474 (2006). [CrossRef] [PubMed]
  8. B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, "Narrowband bulk Bragg grating optical parametric oscillator," Opt. Lett. 30, 2281-2283 (2005). [CrossRef] [PubMed]
  9. M. Henriksson, M. Tiihonen, V. Pasiskevicius, F. Laurell, "ZnGeP2 parametric oscillator pumped by a linewidth narrowed 2 µm source," Opt. Lett. 31, 1878-1880 (2006). [CrossRef] [PubMed]
  10. B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Tunable single-longitudinal-mode ErYb:glass laser locked by a bulk glass Bragg grating," Opt. Lett. 31, 1663-1665 (2006). [CrossRef] [PubMed]
  11. T. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, "Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror," Opt. Lett. 31, 229-231 (2006). [CrossRef] [PubMed]
  12. B. Jacobsson, J. E. Hellström, V. Pasiskevicius, and F. Laurell, "Widely tunable Yb:KYW laser with a volume Bragg grating," Opt. Express 15, 1003-1010 (2007). [CrossRef] [PubMed]
  13. SchottAG , "Optical glass data sheets," http://www.schott.com/optics_devices/english/download/datasheet_all_english.pdf>
  14. H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, M. Jiang, and Y. T. Chow, "Characterization of the laser crystal Nd:GdVO4," J. Opt. Soc. Am. B 19, 18-27 (2002). [CrossRef]
  15. P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, "Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1.-at.% doped Nd: GdVO4 crystal at 1.06 µm wavelength," Appl. Phys. B 77, 81-87 (2003). [CrossRef]
  16. J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov and J. F. Schneider, "Residual internal stress in partially crystallized photothermorefractive glass: Evaluation by nuclear magnetic resonance spectroscopy and first principles calculations," J. Appl. Phys. 99, 083511 (2006). [CrossRef]
  17. G. B. Venus, A. Sevian, V. I. Smirnov and L. B. Glebov,"High-brightness narrow-line laser diode source with volume Bragg-grating feedback," Proc. SPIE 5711, 166-176 (2005). [CrossRef]
  18. R. Horváth, L. R. Lindvold, and N. B. Larsen, "Fabrication of all-polymer freestanding waveguides," J. Micromech. Microeng. 13, 419-424 (2003). [CrossRef]
  19. C. Czeranowsky, "Resonatorinterne Frequenzverdopplung von diodengepumpten Neodym-Lasern mit hohen Ausgangsleistungen im blauen Spektralbereich," Ph.D. thesis, University of Hamburg, (2002).
  20. D. Budker, S. M. Rochester, and V. V. Yashchuk, "Obtaining frequency markers of variable separation with a spherical mirror Fabry-Perot interferometer," Rev. Sci. Instrum. 71, 2984-2987 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited