OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 18 — Sep. 3, 2007
  • pp: 11595–11600

Geometric optics method for surface plasmon integrated circuits

F. Eftekhari and R. Gordon  »View Author Affiliations


Optics Express, Vol. 15, Issue 18, pp. 11595-11600 (2007)
http://dx.doi.org/10.1364/OE.15.011595


View Full Text Article

Enhanced HTML    Acrobat PDF (103 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fully-analytic expression is derived for the phase of reflection of surface plasmons at a semi-infinite boundary. We apply this phase of reflection result in the geometric optics method to calculate the properties of surface plasmon stripe waveguides. Comprehensive vectorial numerical computations are compared with the analytic method to show that it is accurate. The loss of the surface plasmon stripe waveguide is calculated using the geometric optics approach, which is also found to be in close agreement with numerical computations. The geometric optics approach may be used to obtain accurate results for other surface plasmon structures, such as microdisk or ring resonators, with greater efficiency and physical intuition than numerical computations.

© 2007 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 29, 2007
Revised Manuscript: August 22, 2007
Manuscript Accepted: August 24, 2007
Published: August 28, 2007

Citation
R. Gordon and F. Eftekhari, "Geometric optics method for surface plasmon integrated circuits," Opt. Express 15, 11595-11600 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11595


Sort:  Year  |  Journal  |  Reset  

References

  1. H. A. Atwater, "The Promise of Plasmonics," Sci. Am. 62, 7 (2007).
  2. J. Homola, S. S. Yee, and G. Gauglitz, "Surface Plasmon Resonance Sensors: Review," Sens. Actuators B 54, 3-15 (1999). [CrossRef]
  3. W. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  4. S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, "Bend loss in surface plasmon polariton band-gap structures," Appl. Phys. Lett. 79, 1076 (2001). [CrossRef]
  5. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762 (2002). [CrossRef]
  6. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663 (2002). [CrossRef]
  7. DFP Pile, D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069 (2004). [CrossRef] [PubMed]
  8. J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64, 045411 (2001). [CrossRef]
  9. I. Breukelaar, R. Charbonneau, and P. Berini, "Long-range surface plasmon-polariton mode cutoff and radiation in embedded stripe waveguides," J. Appl. Phys. 100, 043104 (2006). [CrossRef]
  10. R. Zia, A. Chandran and M. L. Brongersma, "Dielectric waveguide model for guided surface polaritons," Opt. Lett. 30, 1473 (2005). [CrossRef] [PubMed]
  11. R. Gordon, "Vectorial method for calculating the Fresnel reflection of surface plasmon polaritons," Phys. Rev. B 75, 039901 (2006). [CrossRef]
  12. R. Zia, J. Schuller, and M. Brongersma, "Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides," Phys. Rev. B 74, 165415 (2006). [CrossRef]
  13. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972). [CrossRef]
  14. A. W. Snyder and J. D. Love, "Goos-Hänchen shift," Appl. Opt. 15, 236 (1976). [CrossRef] [PubMed]
  15. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, 1988).
  16. B. E. A. Saleh, Fundamentals of Photonics, (Wiley-Interscience, 1991). [CrossRef]
  17. Y. Satuby and M. Orenstein, "Surface plasmon polariton waveguiding: From multimode stripe to a slot geometry," Appl. Phys. Lett. 90, 251104 (2007). [CrossRef]
  18. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, "Channel plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31, 3447 (2006). [CrossRef] [PubMed]
  19. M. Sandtke, H. Schoenmaker, and I. Attema, "Visualizing surface plasmon polariton wavepackets in space and time," CLEO, QMC5 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited