OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 18 — Sep. 3, 2007
  • pp: 11622–11628

Variation of Bragg condition in low-glass-transition photorefractive polymers when recorded in reflection geometry

M. Eralp, J. Thomas, S. Tay, P.-A. Blanche, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian  »View Author Affiliations


Optics Express, Vol. 15, Issue 18, pp. 11622-11628 (2007)
http://dx.doi.org/10.1364/OE.15.011622


View Full Text Article

Enhanced HTML    Acrobat PDF (311 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two low-glass transition photorefractive polymer composites were investigated in a symmetric reflection geometry. The holograms recorded in 105 µm thick devices have reached diffraction efficiencies as high as 60%. Unlike the gratings recorded in transmission geometry, holograms recorded in reflection geometry showed high angular selectivity and the Bragg condition was observed to be sensitive to the magnitude of the external bias field. We attribute this effect to poling-induced birefringence and give a theoretical analysis to describe the observed results.

© 2007 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(190.5330) Nonlinear optics : Photorefractive optics

ToC Category:
Diffraction and Gratings

History
Original Manuscript: July 6, 2007
Revised Manuscript: August 22, 2007
Manuscript Accepted: August 22, 2007
Published: August 28, 2007

Citation
M. Eralp, J. Thomas, S. Tay, P. A. Blanche, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, "Variation of Bragg condition in low-glass-transition photorefractive polymers when recorded in reflection geometry," Opt. Express 15, 11622-11628 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11622


Sort:  Year  |  Journal  |  Reset  

References

  1. D. Psaltis and F. Mok, "Holographic memories," Sci. Am. 273, 70-76 (1995). [CrossRef] [PubMed]
  2. S. Wu, Q. Song, A. Mayers, D. A. Gregory, and F. T. S. Yu, "Reconfigurable interconnections using photorefractive holograms," Appl. Opt. 29, 1118-1125 (1990). [CrossRef] [PubMed]
  3. R. T. B. James, C. Wah, K. Iizuka, and H. Shimotahira, "Optically tunable optical filter," Appl. Opt. 34, 8230 (1995). [CrossRef] [PubMed]
  4. G. Li, M. Eralp, J. Thomas, S. Tay, A. Schülzgen, R. A. Norwood, and N. Peyghambarian, "All-optical dynamic correction of distorted communication signals using a photorefractive polymeric hologram," Appl. Phys. Lett. 86, 161103 (2005). [CrossRef] [PubMed]
  5. B. Kippelen and N. Peyghambarian, in Polymers for Photonic Applications II, (Springer-Verlag: Berlin, 2003) Vol. 161, Chap. 2.
  6. K. Meerholz, B. L. Volodin, B. K. Sandalphon, and N. Peyghambarian, "Peptide oligomers for holographic data storage," Nature 371, 497-500 (1994). [CrossRef] [PubMed]
  7. D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, "High-speed photorefractive polymer composites," Appl. Phys. Lett. 73, 1490 (1998). [CrossRef] [PubMed]
  8. J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, "Direct observation of orientation limit in a fast photorefractive polymer composite," Appl. Phys. Lett. 74, 2253 (1999). [CrossRef]
  9. M. Eralp, J. Thomas, S. Tay, G. Li, G. Meredith, A. Schülzgen, G. A. Walker, S. Barlow, S. R. Marder, and N. Peyghambarian, "High-performance photorefractive polymer operating at 975 nm," Appl. Phys. Lett. 85, 1095 (2004). [CrossRef] [PubMed]
  10. S. Tay, J. Thomas, M. Eralp, G. Li, S. Marder, G. A. Walker, S. Barlow, M. Yamamoto, R. Norwood, A. Schülzgen, and N. Peyghambarian, "High-performance photorefractive polymer operating at 1550 nm with near-video-rate response time," Appl. Phys. Lett 87, 171105 (2005). [CrossRef] [PubMed]
  11. O-P. Kwon, G. Montemezzani, P. Günter, and S-H. Lee, "High-gain photorefractive reflection gratings in layered photoconductive polymers," Appl. Phys. Lett. 84, 43-45 (2004). [CrossRef]
  12. F. Gallego-Gomez, M. Salvador, S. Köber, and K. Meerholz, "High-performance reflection gratings in photorefractive polymers," Appl. Phys. Lett 90, 251113 1-3 (2007) [CrossRef] [PubMed]
  13. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, "Orientationally enhanced photorefractive effect in polymers," J. Opt. Soc. Am. B 11, 320 (1994). [CrossRef] [PubMed]
  14. J. Thomas, C. Fuentes-Hernandez, M. Yamamoto, K. Cammack, K. Matsumoto, G. Walker, S. Barlow, G. Meredith, B. Kippelen, S. R. Marder, and N. Peyghambarian, "High-performance photorefractive polymer operating at 1550 nm with near-video-rate response time," Adv. Mater. 16, 2032 (2004). [CrossRef] [PubMed]
  15. E. Hendrickx, Y. D. Zhang, K. B. Ferrio, J. A. Herlocker, J. Anderson, N. R. Armstrong, E. A. Mash, A. P. Persoons, N. Peyghambarian, and B. Kippelen, J. Mater. Chem. 9, 2251 (1999). [CrossRef] [PubMed]
  16. N. V. Kuktharev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals," Ferroelectrics 22, 949 (1979). [PubMed]
  17. C. Fuentes-Hernandez, J. Thomas, R. Termine, G. Meredith, S. Barlow, G. Walker, K. Cammack, K. Matsumoto, M. Yamamoto, S. R. Marder, B. Kippelen, and N. Peyghambarian, "Video-rate compatible photorefractive polymers with stable dynamic properties under continuous operation," Appl. Phys. Lett. 85, 1877 (2004). [CrossRef] [PubMed]
  18. W.-J. Joo, H. Chun, I. K. Moon, and N. Kim, "Dependence of the Bragg condition on an external electric field for a Polymeric Photorefractive Material," Appl. Opt. 42, 3271 (2003). [CrossRef] [PubMed]
  19. D. M. Burland, R. D. Miller, and C. A. Walsh, "Second-order nonlinearity in poled-polymer systems," Chem. Rev. 94, 31 (1994). [CrossRef] [PubMed]
  20. H. Kogelnik, "Coupled-wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited