OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 18 — Sep. 3, 2007
  • pp: 11640–11649

Fluorescence microscopy in a microwave cavity

Michael J. R. Previte and Chris D. Geddes  »View Author Affiliations

Optics Express, Vol. 15, Issue 18, pp. 11640-11649 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (6102 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical microscopy is a well-established technique that has wide ranging applications for imaging molecular dynamics of biological systems. Typically, these applications rely on external temperature controllers to maintain or change reactions rates of these biological systems. With increasing interest in applying low power microwaves to drive biological and chemical reactions, we have combined optical and microwave based technologies and developed a fluorescence microscope in a microwave cavity. With this instrument, we have found a means to optically image biological systems inside microwave cavities during the application of microwave pulses.

© 2007 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(300.6370) Spectroscopy : Spectroscopy, microwave
(350.4010) Other areas of optics : Microwaves

ToC Category:

Original Manuscript: June 8, 2007
Revised Manuscript: August 16, 2007
Manuscript Accepted: August 23, 2007
Published: August 29, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Michael J. R. Previte and Chris D. Geddes, "Fluorescence microscopy in a microwave cavity," Opt. Express 15, 11640-11649 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. S. Haduch, S. Baranski, and P. Czerski, "Effect of microwave radiations on the human organism," Acta physiologica Polonica 11, 717-719 (1960). [PubMed]
  2. S. Baranski, L. Czekalinski, P. Czerski, and S. Haduch, "Experimental research on the fatal effect of micrometric wave irradiation," Revue de medecine aeronautique 2, 108-111 (1963). [PubMed]
  3. Z. Bielicki, S. Baranski, P. Czerski, and S. Haduch, "Analysis of difficulties of occupational activity in personnel exposed to micrometric wave irradiation," Revue de medecine aeronautique 2, 106-107 (1963). [PubMed]
  4. S. Baranski and Z. Edelwejn, "Experimental morphologic and electroencephalographic studies of microwave effects on nervous system," Annals of the New York Academy of Sciences 247, 109-116 (1975). [CrossRef] [PubMed]
  5. E. H. Grant, R. J. Sheppard, and G. P. South, Dielectric Behavior of Biological Molecules in Solution (Oxford University Press, 1978).
  6. A. W. J. Dawkins, N. R. V. Nightingale, G. P. South, R. J. Sheppard, and E. H. Grant, "Role of water in microwave-absorption by biological-material with particular reference to microwave hazards," Phys. Med. Biol. 24, 1168-1176 (1979). [CrossRef] [PubMed]
  7. S. Takashima, C. Gabriel, R. Sheppard, and E. Grant, "Dielectric behavior of DNA solution at radio and microwave frequencies (at 20 degrees C)," Biophys. J. 46, 29-34 (1984). [CrossRef] [PubMed]
  8. I. Roy and M. N. Gupta, "Applications of microwaves in biological sciences," Curr. Sci. 85, 1685-1693 (2003).
  9. S. Jain, S. Sharma, and M. N. Gupta, "A microassay for protein determination using microwaves," Anal. Biochem. 311, 84-86 (2002). [CrossRef] [PubMed]
  10. H. Bohr and J. Bohr, "Microwave-enhanced folding and denaturation of globular proteins," Phys. Rev. E 61, 4310-4314 (2000). [CrossRef] [PubMed]
  11. K. R. Foster, "Thermal and nonthermal mechanisms of interaction of radio-frequency energy with biological systems," IEEE Trans. Plasma Sci. 28, 15-23 (2000). [CrossRef]
  12. K. Hamad-Schifferli, J. J. Schwartz, A. T. Santos, S. G. Zhang, and J. M. Jacobson, "Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna," Nature 415, 152-155 (2002). [CrossRef] [PubMed]
  13. M. Zimmer, "Green fluorescent protein (GFP): Applications, structure, and related photophysical behavior," Chemical Reviews 102, 759-781 (2002). [CrossRef] [PubMed]
  14. A. B. Copty, Y. Neve-Oz, I. Barak, M. Golosovsky, and D. Davidov, "Evidence for a specific microwave radiation effect on the green fluorescent protein," Biophys. J. 91, 1413-1423 (2006). [CrossRef] [PubMed]
  15. M. J. R. Previte, and C. D. Geddes, "Microwave-triggered chemiluminescence with planar geometrical aluminum substrates: Theory, simulation and experiment," J. Fluoresc. 17, 279-287 (2007). [CrossRef] [PubMed]
  16. K. Aslan, S. N. Malyn, and C. D. Geddes, "Microwave-accelerated surface plasmon coupled directional luminescence: Application to fast and sensitive assays in buffer, human serum and whole blood," J. Immunol. Methods 323, 55-64 (2007). [CrossRef] [PubMed]
  17. K. Aslan, and C. D. Geddes, "Microwave-accelerated metal-enhanced fluorescence: Platform technology for ultrafast and ultrabright assays," Anal. Chem. 77, 8057-8067 (2005). [CrossRef] [PubMed]
  18. K. Aslan, S. N. Malyn, and C. D. Geddes, "Fast and sensitive DNA hybridization assays using microwave-accelerated metal-enhanced fluorescence," Biochem. and Biophys. Res. Comm. 348, 612-617 (2006). [CrossRef] [PubMed]
  19. V. Sridar, "Rate acceleration of Fischer-indole cyclization by microwave irradiation," Indian J. Chem. 36, 86-87 (1997). [PubMed]
  20. "Technology Vision 2020," (The U.S. Chemical Industry, 1996).
  21. V. Sridar, "Microwave radiation as a catalyst for chemical reactions," Curr. Sci. 74, 446-450 (1998). [PubMed]
  22. R. S. Varma, "Advances in Green chemistry: Chemical Synthesis using microwave irradiation," (Astrazeneca Research Foundation, India, Banglore, 2002).
  23. C. O. Kappe, "High-speed combinatorial synthesis utilizing microwave irradiation," Curr. Opin. Chem. Biol. 6, 314-320 (2002). [CrossRef] [PubMed]
  24. D. Adam, "Microwave chemistry: Out of the kitchen," Nature 421, 571-572 (2003). [CrossRef] [PubMed]
  25. K. Aslan, S. N. Malyn, and C. D. Geddes, "Multicolor microwave-triggered metal-enhanced chemiluminescence," J. Am. Chem. Soc. 128, 13372-13373 (2006). [CrossRef] [PubMed]
  26. R. S. Varma, "Solvent-free organic syntheses - using supported reagents and microwave irradiation," Green Chemistry 1, 43-55 (1999). [CrossRef]
  27. R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, and J. Rousell, "The use of microwave-ovens for rapid organic-synthesis," Tetrahedron Lett. 27, 279-282 (1986). [CrossRef] [PubMed]
  28. A. G. Whittaker, and D. M. P. Mingos, "Microwave-assisted solid-state reactions involving metal powders," J. Chem. Soc. Dalton Trans. 12, 2073-2079 (1995). [CrossRef]
  29. S. Caddick, "Microwave assisted organic reactions," Tetrahedron 51, 10403-10432 (1995). [CrossRef]
  30. M. Pagnotta, C. L. F. Pooley, B. Gurland, and M. Choi, "Microwave activation of the mutarotation of alpha-D-glucose - an example of an intrinsic microwave effect," J. Phys. Org. Chem. 6, 407-411 (1993). [CrossRef]
  31. A. Shaman, S. Mizrahi, U. Cogan, and E. Shimoni, "Examining for possible non-thermal effects during heating in a microwave oven," Food Chemistry 103, 444-453 (2007). [CrossRef]
  32. R. K. Adair, "Biophysical limits on athermal effects of RF and microwave radiation," Bioelectromagnetics 24, 39-48 (2003). [CrossRef]
  33. R. Weissenborn, K. Diederichs, W. Welte, G. Maret, and T. Gisler, "Non-thermal microwave effects on protein dynamics? An X-ray diffraction study on tetragonal lysozyme crystals," Acta Crystallogr. 61, 163-172 (2005).
  34. J. Gellermann, W. Wlodarczyk, B. Hildebrandt, H. Ganter, A. Nicolau, B. Rau, W. Tilly, H. Fahling, J. Nadobny, R. Felix, and P. Wust, "Noninvasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 Tesla hybrid system," Cancer Res. 65, 5872-5880 (2005). [CrossRef] [PubMed]
  35. M. J. R. Previte, and C. D. Geddes, "Spatial and temporal control of microwave triggered chemiluminescence: A rapid and sensitive protein detection platform," Anal. Chem.in press (2007). [CrossRef] [PubMed]
  36. C. L. R. Catherall, T. F. Palmer, and R. B. Cundall, "Chemiluminescence from reactions of bis(Pentachrlophenyl)oxalate, hydrogen-peroxide and fluorescent compounds - kinetics and mechanism," J. Chem. Soc. Faraday Trans. Trans 11 80, 823-836 (1984). [CrossRef]
  37. O. Filevich, and R. Etchenique, "1D and 2D temperature imaging with a fluorescent ruthenium complex," Anal. Chem. 78, 7499-7503 (2006). [CrossRef] [PubMed]
  38. B. Durham, J. V. Caspar, J. K. Nagle, and T. J. Meyer, "Photochemistry of Ru(bpy)32+," J. Am. Chem. Soc. 104, 4803-4810 (1982). [CrossRef]
  39. J. Vanhouten and R. J. Watts, "Temperature-dependence of photophysical and photochemical properties of Tris(2,2’-bypridyl)Ruthenium(II) ion in aqueous solution," J. Am. Chem. Soc. 98, 4853-4858 (1976). [CrossRef]
  40. O. Filevich, and R. Etchenique, "1D and 2D temperature imaging with a fluorescent ruthenium complex," Anal. Chem. 78, 7499-7503 (2006). [CrossRef] [PubMed]
  41. N. A. Nemkovich, A. N. Rubinov, and A. T. Tomin, "Inhomogeneous Broadening of Electronic Spectra of Dye Molecules in Solutions," in Topics in Fluorescence Spectroscopy, Vol. 2, Principles, J. R. Lakowicz, ed., (Plenum Press, New York, 1991), pp. 367-428.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2320 KB)     
» Media 2: AVI (2320 KB)     
» Media 3: AVI (1826 KB)     
» Media 4: AVI (2192 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited