OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 19 — Sep. 17, 2007
  • pp: 11769–11775

Band gap characterization and slow light effects in one dimensional photonic crystals based on silicon slot-waveguides

F. Riboli, P. Bettotti, and L. Pavesi  »View Author Affiliations

Optics Express, Vol. 15, Issue 19, pp. 11769-11775 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (386 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the photonic properties of one dimensional photonic crystals realized on Silicon On Insulator channel slot-waveguide to engineer slow light effects. Various geometries of the photonic pattern have been characterized and their photonic band-gap structure analyzed. The optimal geometry has been further used to realize a coupled resonator optical waveguide (CROW). A first optimization of these CROW devices shows a group velocity of more than c/10 at 1.55 µm. Full three dimensional calculations based on the planar wave expansion method have been used to compute the band diagram while full three dimensional calculations based on finite difference time domain methods have been used to study light propagation.

© 2007 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(130.5990) Integrated optics : Semiconductors
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Photonic Crystals

Original Manuscript: June 13, 2007
Revised Manuscript: August 1, 2007
Manuscript Accepted: August 5, 2007
Published: August 31, 2007

F. Riboli, P. Bettotti, and L. Pavesi, "Band gap characterization and slow light effects in one dimensional photonic crystals based on silicon slot-waveguides," Opt. Express 15, 11769-11775 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. V. Almeida and Q. Xu and C. A. Barrios and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). [CrossRef] [PubMed]
  2. Q. Xu and V. R. Almeida and R. R. Panepucci and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626-1628 (2004). [CrossRef] [PubMed]
  3. J. T. Robinson, C. Manolatou, L. Chen and M. Lipson, "Ultrasmall Mode Volumes in Dielectric Optical Microcavities," Phys. Rev. Lett. 95, 1439011-1439014 (2005). [CrossRef]
  4. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen and J. D. Joannopoulos, "Photonic crystals slow-light enhancement of nonlinear phase sensitivity," J. Opt. Soc. Am. B 19, 2052-2059 (2002). [CrossRef]
  5. Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati and I. Carusotto, "Photon energy lifter," Opt. Express 14, 7270-7278 (2006). [CrossRef] [PubMed]
  6. A. Melloni, F. Morichetti and M. Martinelli, "Optical Slow wave structures," Opt. Photon. News 14, 44-48 (2003). [CrossRef]
  7. J. Scheuer, G.T. Paloczi, J.K.S. Poon and A. Yariv, "Coupled Resonator Optical Waveguides: Toward the Slowing & Storage of Light," Opt. Photon. News 16, 36-40 (2005). [CrossRef]
  8. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  9. CrysalWave FDTD software, ver. 2.1 by PhotonDesign Ltd.
  10. M. Ghulinyan, C.J. Oton, G. Bonetti, Z. Gaburro and L. Pavesi, "Free-standing porous silicon single and multiple optical cavities," J. Appl. Phys. 93, 9724-9729 (2003). [CrossRef]
  11. P. Lalanne and J.P. Hugonin, "Bloch-wave engineering of high-Q small-V microcavities," IEEE J. Quantum Electron. 39, 1430-1438 (2003). [CrossRef]
  12. P. Lalanne, M. Mias and J.P. Hugonin, "Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities," Opt. Express 12, 458-467 (2004). [CrossRef] [PubMed]
  13. G. Steven, S. Johnson, A. Fan, J.D. Mekis and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001). [CrossRef]
  14. F. Riboli, A. Recati, N. Daldosso, L. Pavesi, G. Pucker, A. Lui, S. Cabrini and E. Di Fabrizio, "Photon recycling in Fabry Perot micro-cavities based on Si3N4 waveguides," PNFA 4, 41-46 (2006).
  15. Y. Akahane, T. Asano, B. S. Song and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  16. Y-H. Ye, J. Ding, D.-Y. Jeong, I. C. Khoo and Q. M. Zhang, "Finite-size effect on one-dimensional coupled resonator optical waveguides," Phys. Rev. E 69, 0566041-0566046 (2004). [CrossRef]
  17. M. Ghulynian, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D.S. Wiersma, L. Pavesi and L. Andreani, "Wide-band transmission of non-distorted slow waves in 1D optical superlattices," Appl. Phys. Lett. 88, 241103-241105 (2006). [CrossRef]
  18. F. Y. Mehmet and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 920839011-0839014 (2004).
  19. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss and L. Kuipers, "Real space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 0739031-0739034 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited