OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 19 — Sep. 17, 2007
  • pp: 11827–11842

Optical wave properties of nano-particle chains coupled with a metal surface

Vitaliy Lomakin, Meng Lu, and Eric Michielssen  »View Author Affiliations

Optics Express, Vol. 15, Issue 19, pp. 11827-11842 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (456 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical phenomena supported by ordered and disordered chains of metal nano-particles on a metal surface are investigated by considering a particular example of gold nano-bumps on a gold surface. The TWs supported by these structures are analyzed by studying the frequency-wavenumber spectra of the fields excited by localized sources placed near the chain. Periodic nano-bump chains support traveling waves (TWs) that propagate without radiation loss along, and are confined to the region near, the chain. These TWs are slow waves with respect to both space fields and surface plasmon polaritons supported by the metal surface. For nearly resonant nano-bumps, the TWs are well confined and can be excited efficiently by a localized source placed near the chain but the TW propagation length is short. For non-resonant nano-bumps, the TWs have large propagation lengths but are not well confined and are excited less efficiently. The TWs supported by nano-bump chains were shown to have larger propagation lengths than free-standing chains of the same dimension/size and cross-sectional confinement. TWs also are supported by disordered chains and chains with sharp bends. Perturbations in nano-bump positions are shown to reduce the TW propagation length much less significantly than perturbations in their sizes. Transmission through sharp chain bends is much stronger for nearly resonant nano-bumps than for nonresonant ones. In addition to their ability to support TWs, nano-bump chains can be used to manipulate (excite/reflect/refract) SPPs on the metal surface.

© 2007 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Optics at Surfaces

Original Manuscript: July 12, 2007
Revised Manuscript: August 28, 2007
Manuscript Accepted: August 31, 2007
Published: September 4, 2007

Vitaliy Lomakin, Meng Lu, and Eric Michielssen, "Optical wave properties of nano-particle chains coupled with a metal surface," Opt. Express 15, 11827-11842 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (J. Wiley New York, 1983).
  2. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, and A. Leitner, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999). [CrossRef]
  3. M. Quinten, A. Leitner, R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  4. S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett. 81, 1714-1716 (2002). [CrossRef]
  5. S. A. Maier, P. E. Barclay, T. J. Johnson, M. D. Friedman, and O. Painter, "Low-loss fiber accessible plasmon waveguide for planar energy guiding and sensing," Appl. Phys. Lett. 84, 3990-3992 (2004). [CrossRef]
  6. S. A. Maier and H. A. Atwater, "Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 11101-11101 (2005). [CrossRef]
  7. I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, "Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory," Phys. Rev. B 69, 121403 (2004). [CrossRef]
  8. C. R. Simovski and A. J. V. S. A. Tretyakov, "Resonator mode in chains of silver spheres and its possible application," Phys Rev. E 72, 066606 (2005). [CrossRef]
  9. W. H. Weber and G. W. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004). [CrossRef]
  10. R. A. Shore and A. D. Yaghjian, "Travelling electromagnetic waves on linear periodic arrays of lossless spheres," Electron. Lett. 41, 578-580 (2005). [CrossRef]
  11. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, 16356-16359 (2000). [CrossRef]
  12. V. A. Markel and A. K. Sarychev, "Propagation of surface plasmons in ordered and disordered chains of metal nanospheres," Phys. Rev. B 75, 085426 (2007). [CrossRef]
  13. A. Alù and N. Engheta, "Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines," Phys. Rev. B 74, 205436 (2006). [CrossRef]
  14. F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied in the design of metasurfaces and metamaterials," Phys. Rev. Lett. 93, 197401 (2004). [CrossRef] [PubMed]
  15. C. Girard and R. Quidant, "Near-field optical transmittance of metal particle chain waveguides," Opt. Express 12, 6141-6146 (2004). [PubMed]
  16. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008 (2001). [CrossRef] [PubMed]
  17. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002). [CrossRef]
  18. Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 1726 -1729 (2005). [CrossRef] [PubMed]
  19. H. L. Offerhaus, B. E. van den Bergen, M., F. B. Segerink, J. P. Korterik, and N. F. van Hulst, "Creating Focused Plasmons by Noncollinear Phasematching on Functional Gratings," Nano Lett. 5, 2144-2148 (2005). [CrossRef] [PubMed]
  20. J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express 14, 5664-5670 (2006). [CrossRef] [PubMed]
  21. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998). [CrossRef]
  22. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K.M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole array," Phys. Rev. Lett. 86, 1114-1117 (2001). [CrossRef] [PubMed]
  23. V. Lomakin, "Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched in between dielectric slabs," Phys. Rev. B 71, 235117 (235111-235110) (2005). [CrossRef]
  24. V. Lomakin, N. W. Chen, S. Q. Li, and E. Michielssen, "Enhanced transmission through two-period arrays of sub-wavelength holes," IEEE Microwave Wirel. Compon. Lett. 14, 355-357 (2004). [CrossRef]
  25. R. E. Collin and F. J. Zucker, Antenna theory, Part Two (McGraw-Hill, New York, 1969).
  26. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006). [CrossRef] [PubMed]
  27. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, MA, 1995).
  28. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE Press, Piscataway NJ, 1994). [CrossRef]
  29. A. Alù and N. Engheta, "On Role of Random Disorders and Imperfections on Performance of Metamaterials," presented at the 2007 IEEE Antennas and Propagation Society International Symposium, Honolulu, Hawaii, 2007.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1483 KB)     
» Media 2: AVI (959 KB)     
» Media 3: AVI (955 KB)     
» Media 4: AVI (929 KB)     
» Media 5: AVI (2253 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited