OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 19 — Sep. 17, 2007
  • pp: 11971–11977

Generalized phase contrast matched to Gaussian illumination

Darwin Palima, Carlo Amadeo Alonzo, Peter John Rodrigo, and Jesper Glückstad  »View Author Affiliations

Optics Express, Vol. 15, Issue 19, pp. 11971-11977 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (193 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that the generalized phase contrast method (GPC) can be used as a versatile tool for shaping an incident Gaussian illumination into arbitrary lateral beam profiles. For illustration, we use GPC in an energy-efficient phase-only implementation of various apertures that do not block light but instead effectively redirect the available photons from a bell-shaped light distribution. GPC-based generation of lateral beam profiles can thus be achieved using a simplified optical implementation as it eliminates the need for a potentially lossy initial beam shaping. The required binary phase input is simple to fabricate for static applications and can be easily reconfigured up to device frame refresh rates for dynamic applications.

© 2007 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(070.6110) Fourier optics and signal processing : Spatial filtering
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(140.3300) Lasers and laser optics : Laser beam shaping

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 5, 2007
Revised Manuscript: August 31, 2007
Manuscript Accepted: August 31, 2007
Published: September 5, 2007

Darwin Palima, Carlo A. Alonzo, Peter J. Rodrigo, and Jesper Glückstad, "Generalized phase contrast matched to Gaussian illumination," Opt. Express 15, 11971-11977 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. F. M. Dickey and S. C. Holswade, Laser Beam Shaping: Theory and Techniques (Marcel Dekker, New York, 2000). [CrossRef]
  2. F. M. Dickey, S. C. Holswade, & D. L. Shealy, eds., Laser. Beam Shaping Applications (CRC Press, 2005). [CrossRef]
  3. B. R. Frieden, "Lossless conversion of a plane laser wave to a plane wave of uniform irradiance," Appl. Opt. 4, 1400-1403 (1965). [CrossRef]
  4. J. A. Hoffnagle and C. M. Jefferson, "Design and performance of a refractive optical system that converts a gaussian to a flattop beam," Appl. Opt. 39, 5488-5499 (2000). [CrossRef]
  5. F. Wippermann, U. D. Zeitner, P. Dannberg, A. Bräuer, and S. Sinzinger, "Beam homogenizers based on chirped microlens arrays," Opt. Express 15, 6218-6231 (2007). [CrossRef] [PubMed]
  6. M. T. Eismann, A. M. Tai, and J. N. Cederquist, "Iterative design of a holographic beamformer," Appl. Opt. 28, 2641-2650 (1989). [CrossRef] [PubMed]
  7. V. A. Soifer, Methods for Computer Design of Diffractive Optical Elements (John Wiley & Sons, New York, 2002).
  8. A. J. Caley, M. Braun, A. J. Waddie, and M. R. Taghizadeh, "Analysis of multimask fabrication errors for diffractive optical elements," Appl. Opt. 46, 2180-2188 (2007). [CrossRef] [PubMed]
  9. C. O. Weiss and Y. Larionova, "Pattern formation in optical resonators," Rep. Prog. Phys. 70,255-335 (2007). [CrossRef]
  10. R. L. Eriksen,; P. C. Mogensen, and J. Glückstad, "Elliptical polarisation encoding in two dimensions using phase-only spatial light modulators," Opt. Commun. 187, 325-336 (2001). [CrossRef]
  11. J. Glückstad, "Phase contrast image synthesis," Opt. Commun. 130, 225-230 (1996). [CrossRef]
  12. C. Blanca and S. Hell, "Axial superresolution with ultrahigh aperture lenses," Opt. Express 10, 893-898 (2002). [PubMed]
  13. S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997). [CrossRef] [PubMed]
  14. Y. Liu, S. Sun, S. Singha, M. R. Cho, and R. J. Gordon, "3D femtosecond laser patterning of collagen for directed cell attachment," Biomaterials 26, 4597-4605 (2005). [CrossRef] [PubMed]
  15. D. Psaltis, "Coherent optical information systems," Science 298, 1359-1363 (2002). [CrossRef] [PubMed]
  16. S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, "One-dimensional optically bound arrays of microscopic particles," Phys. Rev. Lett 89, 283901 (2002). [CrossRef]
  17. G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, "Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes," Opt. Lett. 32, 1144-1146 (2007). [CrossRef] [PubMed]
  18. S. Maruo and H. Inoue, "Optically driven micropump produced by three-dimensional two-photon microfabrication," Appl. Phys. Lett. 89, 144101 (2006). [CrossRef]
  19. R. L. Eriksen, V. R. Daria, and J. Glückstad, "Fully dynamic multiple-beam optical tweezers," Opt. Express 10,597-602 (2002). [PubMed]
  20. P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Glückstad, "Interactive light-driven and parallel manipulation of inhomogeneous particles," Opt. Express 10,1550-1556 (2002). [PubMed]
  21. P.J. Rodrigo, V.R. Daria, and J. Glückstad, "Real-time three-dimensional optical micromanipulation of multiple particles and living cells," Opt. Lett.  29 2270-2272 (2004). [CrossRef] [PubMed]
  22. N. Arneborg, H. Siegumfeldt, G. H. Andersen, P. Nissen, V. R. Daria, P. J. Rodrigo, and J. Glückstad, "Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture," FEMS Microbiol. Lett. 245, 155-159 (2005). [CrossRef] [PubMed]
  23. P. J. Rodrigo, V. R. Daria, and J. Glückstad, "Four-dimensional optical manipulation of colloidal particles," Appl. Phys. Lett. 86, 074103 (2005). [CrossRef]
  24. I. R. Perch-Nielsen, P. J. Rodrigo, C. A. Alonzo, and J. Glückstad, "Autonomous and 3D real-time multi-beam manipulation in a microfluidic environment," Opt. Express 14, 12199-12205 (2006). [CrossRef] [PubMed]
  25. P. Rodrigo, L. Gammelgaard, P. Bøggild, I. Perch-Nielsen, and J. Glückstad, "Actuation of microfabricated tools using multiple GPC-based counterpropagating beam traps," Opt. Express 13, 6899-6904 (2005). [CrossRef] [PubMed]
  26. J. Glückstad and P.C. Mogensen, "Optimal phase contrast in common-path interferometry," Appl. Opt. 40, 268-282 (2001). [CrossRef]
  27. F. Zernike, "How I discovered phase contrast," Science 121, 345-349 (1955). [CrossRef] [PubMed]
  28. C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, "Photon-efficient grey-level image projection by the generalized phase contrast method," New J. Phys. 9, 132 (2007). [CrossRef]
  29. J. Glückstad, L. Lading, H. Toyoda, and T. Hara, "Lossless light projection," Opt. Lett. 22, 1373-1375 (1997). [CrossRef]
  30. D. Palima and V. R. Daria, "Effect of spurious diffraction orders in arbitrary multifoci patterns produced via phase-only holograms," Appl. Opt. 45, 6689-6693 (2006). [CrossRef] [PubMed]
  31. D. Palima and V. R. Daria, "Holographic projection of arbitrary light patterns with a suppressed zero-order beam," Appl. Opt. 46, 4197-4201 (2007) [CrossRef] [PubMed]
  32. P. C. Mogensen and J. Glückstad, "Phase-only optical encryption," Opt. Lett. 25, 566-568 (2000). [CrossRef]
  33. V. R. Daria, P. J. Rodrigo, S. Sinzinger, and J. Glückstad, "Phase-only optical decryption in a planar-integrated micro-optics system," Opt. Eng.  43 2223-2227 (2004). [CrossRef]
  34. J. Glückstad, "Adaptive array illumination and structured light generated by spatial zero-order self-phase modulation in a Kerr medium," Opt. Commun. 120,194-203 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited