OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 19 — Sep. 17, 2007
  • pp: 12076–12087

Chemically-selective imaging of brain structures with CARS microscopy

Conor L. Evans, Xiaoyin Xu, Santosh Kesari, X. Sunney Xie, Stephen T.C. Wong, and Geoffrey S. Young  »View Author Affiliations

Optics Express, Vol. 15, Issue 19, pp. 12076-12087 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (495 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the use of coherent anti-Stokes Raman scattering (CARS) microscopy to image brain structure and pathology ex vivo. Although non-invasive clinical brain imaging with CT, MRI and PET has transformed the diagnosis of neurologic disease, definitive pre-operative distinction of neoplastic and benign pathologies remains elusive. Definitive diagnosis still requires brain biopsy in a significant number of cases. CARS microscopy, a nonlinear, vibrationally-sensitive technique, is capable of high-sensitivity chemically-selective three-dimensional imaging without exogenous labeling agents. Like MRI, CARS can be tuned to provide a wide variety of possible tissue contrasts, but with sub-cellular spatial resolution and near real time temporal resolution. These attributes make CARS an ideal technique for fast, minimally invasive, non-destructive, molecularly specific intraoperative optical diagnosis of brain lesions. This promises significant clinical benefit to neurosurgical patients by providing definitive diagnosis of neoplasia prior to tissue biopsy or resection. CARS imaging can augment the diagnostic accuracy of traditional frozen section histopathology in needle biopsy and dynamically define the margins of tumor resection during brain surgery. This report illustrates the feasibility of in vivo CARS vibrational histology as a clinical tool for neuropathological diagnosis by demonstrating the use of CARS microscopy in identifying normal brain structures and primary glioma in fresh unfixed and unstained ex vivo brain tissue.

© 2007 Optical Society of America

OCIS Codes
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.4730) Medical optics and biotechnology : Optical pathology
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(180.6900) Microscopy : Three-dimensional microscopy
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 25, 2007
Revised Manuscript: August 24, 2007
Manuscript Accepted: August 31, 2007
Published: September 6, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Conor L. Evans, Xiaoyin Xu, Santosh Kesari, X. Sunney Xie, Steven T. C. Wong, and Geoffrey S. Young, "Chemically-selective imaging of brain structures with CARS microscopy," Opt. Express 15, 12076-12087 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. D. D. Langleben, and G. M. Segall, "PET in differentiation of recurrent brain tumor from radiation injury," J. Nucl. Med. 41, 1861-1867 (2000). [PubMed]
  2. M. C. Preul, R. Leblanc, Z. Caramanos, R. Kasrai, S. Narayanan, and D. L. Arnold, "Magnetic resonance spectroscopy guided brain tumor resection: differentiation between recurrent glioma and radiation change in two diagnostically difficult cases," Can. J. Neurol. Sci. 25, 13-22 (1998). [PubMed]
  3. Y. Ge, M. Law, and R. I. Grossman, "Applications of diffusion tensor MR imaging in multiple sclerosis," Ann. N Y Acad. Sci. 1064, 202-219 (2005). [CrossRef]
  4. D. Goldberg-Zimring, A. U. Mewes, M. Maddah, and S. K. Warfield, "Diffusion tensor magnetic resonance imaging in multiple sclerosis," J. Neuroimaging 15, 68S-81S (2005). [CrossRef] [PubMed]
  5. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. U S A 100, 7075-7080 (2003). [CrossRef] [PubMed]
  6. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, "Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493-508 (2002). [CrossRef]
  7. W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003). [CrossRef] [PubMed]
  8. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography," Am. J. of Physiol. 268, H802 (1995).
  9. J. G. Fujimoto, "Optical coherence tomography - a review of the principles and contemporary uses in retinal investigation," Nat. Biotechnol. 21, 1361--1367 (2003). [CrossRef] [PubMed]
  10. J. X. Cheng, and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004). [CrossRef]
  11. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, "High sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy," Opt. Lett. 31, 1872-1874 (2006). [CrossRef] [PubMed]
  12. C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. U S A 102, 16807-16812 (2005). [CrossRef] [PubMed]
  13. E. Potma, W. P. de Boeij, P. J. van Haastert, and D. A. Wiersma, "Real-time visualization of intracellular hydrodynamics in single living cells," Proc. Natl. Acad. Sci. U S A 98, 1577-1582 (2001). [CrossRef] [PubMed]
  14. X. Nan, E. O. Potma, and X. S. Xie, "Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-stokes Raman scattering microscopy," Biophys. J. 91, 728-735 (2006). [CrossRef] [PubMed]
  15. F. Ganikhanov, S. Carrasco, X. Sunney Xie, M. Katz, W. Seitz, and D. Kopf, "Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 31, 1292-1294 (2006). [CrossRef] [PubMed]
  16. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, "Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues," Biophys. J. 89, 581-591 (2005). [CrossRef] [PubMed]
  17. F. Helmchen, and W. Denk, "Deep tissue two-photon microscopy," Nature 200, 5 (2002).
  18. M. Rueckel, J. A. Mack-Bucher, and W. Denk, "Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing," Proc. Natl. Acad. Sci. U S A 103, 17137 (2006). [CrossRef] [PubMed]
  19. P. Marsh, D. Burns, and J. Girkin, "Practical implementation of adaptive optics in multiphoton microscopy," Opt. Express 11, 1123--1130 (2003). [CrossRef] [PubMed]
  20. M. Müller, and J. M. Schins, "Imaging the thermodynamics state of lipid membranes with multiplex CARS microscopy," J. Phys. Chem. B 106, 3715-3723 (2002). [CrossRef]
  21. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles," J. Phys. Chem. B 106, 8493-8498 (2002). [CrossRef]
  22. E. O. Potma, C. Evans, X. S. Xie, R. J. Jones, and J. Ye, "Picosecond-pulse amplification with an external passive optical cavity," Opt. Lett. 28, 1835-1837 (2003). [CrossRef] [PubMed]
  23. A. Mizuno, T. Hayashi, K. Tashibu, S. Maraishi, K. Kawauchi, and Y. Ozaki, "Near-infrared FT-Raman spectra of the rat brain tissues," Neurosci. Lett. 141, 47-52 (1992). [CrossRef] [PubMed]
  24. C. W. Ong, Z. X. Shen, Y. He, T. Lee, and S. H. Tang, "Raman Microspectroscopy of the brain tissues in the substantia nigra and MPRP-induced Parkinson's disease," J. Raman Spectrosc. 30, 91-96 (1999). [CrossRef]
  25. S. C. Gebhart, W. C. Lin, and A. Mahadevan-Jansen, "In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling," Phys. Med. Biol. 51, 2011-2027 (2006). [CrossRef] [PubMed]
  26. E. O. Potma, C. L. Evans, and X. S. Xie, "Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging," Opt Lett 31, 241-243 (2006). [CrossRef] [PubMed]
  27. A. Mehta, J. Jung, B. Flusberg, and M. Schnitzer, "Fiber optic in vivo imaging in the mammalian nervous system," Curr. Opin. Neurobiol. 14, 11 (2004). [CrossRef]
  28. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett. 30, 3 (2005). [CrossRef]
  29. F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, "Towards CARS Endoscopy," Opt. Express 14, 4427-4432 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (14654 KB)     
» Media 2: MOV (3513 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited