OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 19 — Sep. 17, 2007
  • pp: 12114–12122

Direct Measurement of the Atom Number in a Bose Condensate

Hung-Wen Cho, Yan-Cheng He, Thorsten Peters, Yi-Hsin Chen, Han-Chang Chen, Sheng-Chiun Lin, Yi-Chi Lee, and Ite A. Yu  »View Author Affiliations


Optics Express, Vol. 15, Issue 19, pp. 12114-12122 (2007)
http://dx.doi.org/10.1364/OE.15.012114


View Full Text Article

Enhanced HTML    Acrobat PDF (221 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on directly measuring the atom number in a Bose-Einstein condensate by the method of optical pumping. Only the branching ratio of the spontaneous decay in the system and the absorption energy of a probe laser beam are required to determine the atom number. The measured absorption energy is not affected by the measurement condition such as the intensity, detuning, and polarization of the probe beam, the magnetic field, etc. We have shown that atom numbers as low as a few thousands can be measured. The atom number is an important parameter in the studies of Bose condensates and its accuracy is greatly improved by this sensitive and robust method.

© 2007 Optical Society of America

OCIS Codes
(120.1880) Instrumentation, measurement, and metrology : Detection
(300.1030) Spectroscopy : Absorption
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: June 28, 2007
Revised Manuscript: September 6, 2007
Manuscript Accepted: September 6, 2007
Published: September 7, 2007

Citation
Hung-Wen Cho, Yan-Cheng He, Thorsten Peters, Yi-Hsin Chen, Han-Chang Chen, Sheng-Chiun Lin, Yi-Chi Lee, and Ite A. Yu, "Direct measurement of the Atom number in a Bose condensate," Opt. Express 15, 12114-12122 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-19-12114


Sort:  Year  |  Journal  |  Reset  

References

  1. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, "Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor," Science 269, 198-201 (1995). [CrossRef] [PubMed]
  2. K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Bose-Einstein Condensation in a Gas of Sodium Atoms, " Phys. Rev. Lett. 75, 3969-3973 (1995). [CrossRef] [PubMed]
  3. M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, "Observation of Interference between Two Bose Condensates," Science 275, 637-641 (1997). [CrossRef] [PubMed]
  4. M. Greiner, O. Mandel, T. Esslinger, T.W. H¨ansch, and I. Bloch, "Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms," Nature (London) 415, 39-44 (2002). [CrossRef]
  5. S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, and R. Grimm, "Bose-Einstein Condensation of Molecules," Science 302, 2101-2103 (2003). [CrossRef] [PubMed]
  6. M. Greiner, C. A. Regal, and D. S. Jin, "Emergence of a molecular Bose-Einstein condensate from a Fermi gas," Nature (London) 426, 537-540 (2003). [CrossRef]
  7. M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle, "Observation of Bose-Einstein Condensation of Molecules," Phys. Rev. Lett. 91, 250401 (2003). [CrossRef]
  8. L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature (London) 397, 594-598 (1999). [CrossRef]
  9. C. Liu, Z. Dutton, C. H. Behroozi, L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature (London) 409, 490-493 (2001). [CrossRef]
  10. N. S. Ginsberg, S. R. Garner, and L. V. Hau, "Coherent control of optical information with matter wave dynamics," Nature (London) 445, 623-626 (2007). [CrossRef]
  11. M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, E. A. Cornell, "Vortices in a Bose- Einstein Condensate," Phys. Rev. Lett. 83, 2498-2501 (1999). [CrossRef]
  12. A. J. Leggett, "Bose-Einstein condensation in the alkali gases: Some fundamental concepts," Rev. Mod. Phys. 73, 307-356 (2001). [CrossRef]
  13. C. F. Li and G. C. Guo, "Quantum nondemolition measurement of the atom number of a Bose-Einstein condensate," Phys. Lett. A 248, 117-123 (1998). [CrossRef]
  14. In a two-level system, the absorption cross section of a laser field is equal to the imaginary part of [3λ 2/(2π)]ρegΓ′/Ω, where ρeg is the amplitude of the density matrix element between the excited state |e> and the ground state |g>, Γ′ is the spontaneous decay rate from |e> to |g>, and Γ is the Rabi frequency of the laser field. For the solution of ρeg, see M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997), Sec. 5.3.2 and Eq. (17.1.20).
  15. Y. C. Chen, Y. A. Liao, L. Hsu, and I. A. Yu, "Simple technique for directly and accurately measuring the number of atoms in a magneto-optical trap," Phys. Rev. A  64, 031401(R) (2001). [CrossRef]
  16. J. Dalibard and C. Cohen-Tannoudji, "Laser cooling below the Doppler limit by polarization gradients: simple theoretical models," J. Opt. Soc. Am. B 6, 2023-2045 (1989). [CrossRef]
  17. W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, "Stable, Tightly Confining Magnetic Trap for Evaporative Cooling of Neutral Atoms," Phys. Rev. Lett. 74, 3352-3355 (1995). [CrossRef] [PubMed]
  18. H. F. Hess, "Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen," Phys. Rev. B 34, 3476-3479 (1986). [CrossRef]
  19. K. B. Davis, M. O. Mewes, M. A. Joffe, M. R. Andrews, and W. Ketterle, "Evaporative Cooling of Sodium Atoms," Phys. Rev. Lett. 74, 5202-5205 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited