OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 19 — Sep. 17, 2007
  • pp: 12131–12144

Fluorescence near metal tips: The roles of energy transfer and surface plasmon polaritons

Nader A. Issa and Reinhard Guckenberger  »View Author Affiliations


Optics Express, Vol. 15, Issue 19, pp. 12131-12144 (2007)
http://dx.doi.org/10.1364/OE.15.012131


View Full Text Article

Enhanced HTML    Acrobat PDF (1718 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We simulate the remarkable changes that occur to the decay rates of a fluorescent molecule as a conical metal tip approaches. A new and simple model is developed to reveal and quantify which decay channels are responsible. Our analysis, which is independent of the method of molecular excitation, shows some universal characteristics. As the tip-apex enters the molecule’s near-field, the creation of surface plasmon polaritons can become extraordinarily efficient, leading to an increase in the nonradiative rate and, by proportional radiative-damping, in the radiative rate. Enhancements reaching 3 orders of magnitude have been found, which can improve the apparent brightness of a molecule. At distances less than ~5nm, short-ranged energy transfer to the nano-scale apex quickly becomes dominant and is entirely nonradiative.

© 2007 Optical Society of America

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(180.5810) Microscopy : Scanning microscopy
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(260.2510) Physical optics : Fluorescence
(260.3910) Physical optics : Metal optics

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 6, 2007
Revised Manuscript: August 12, 2007
Manuscript Accepted: August 12, 2007
Published: September 10, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Nader A. Issa and Reinhard Guckenberger, "Fluorescence near metal tips: The roles of energy transfer and surface plasmon polaritons," Opt. Express 15, 12131-12144 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-19-12131


Sort:  Year  |  Journal  |  Reset  

References

  1. R. R. Chance, A. Prock, and R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978). [CrossRef]
  2. G. W. Ford and W. H. Weber, "Electromagnetic-interactions of molecules with metal-surfaces," Phys. Rep. 113, 195-287 (1984). [CrossRef]
  3. W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661-699 (1998). [CrossRef]
  4. R. X. Bian, R. C. Dunn, and X. S. Xie, "Single molecule emission characteristics in near-field microscopy," Phys. Rev. Lett. 75, 4772-4775 (1995). [CrossRef] [PubMed]
  5. N. Hayazawa, Y. Inouye, and S. Kawata, "Evanescent field excitation and measurement of dye fluorescence in a metallic probe near-field scanning optical microscope," J. Microsc. 194, 472-476 (1999). [CrossRef]
  6. E. J. Sanchez, L. Novotny, and X. S. Xie, "Near-field fluorescence microscopy based on two-photon excitation with metal tips," Phys. Rev. Lett. 82, 4014-4017 (1999). [CrossRef]
  7. T. J. Yang, G. A. Lessard, and S. R. Quake, "An apertureless near-field microscope for fluorescence imaging," Appl. Phys. Lett. 76, 378-380 (2000). [CrossRef]
  8. A. Kramer, W. Trabesinger, B. Hecht, and U. P. Wild, "Optical near-field enhancement at a metal tip probed by a single fluorophore," Appl. Phys. Lett. 80, 1652-1654 (2002). [CrossRef]
  9. H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, "High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip," Phys. Rev. Lett. 93, 200801 (2004). [CrossRef] [PubMed]
  10. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, (2005). [CrossRef] [PubMed]
  11. F. M. Huang, F. Festy, and D. Richards, "Tip-enhanced fluorescence imaging of quantum dots," Appl. Phys. Lett. 87, (2005). [CrossRef]
  12. H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. Van Hulst, "Near-field effects in single molecule emission," J. Microsc. 202, 374-378 (2001). [CrossRef] [PubMed]
  13. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 4 (2006). [CrossRef]
  14. S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, (2006). [CrossRef] [PubMed]
  15. F. Cannone, G. Chirico, A. R. Bizzarri, and S. Cannistraro, "Quenching and blinking of fluorescence of a single dye molecule bound to gold nanoparticles," J. Phys. Chem. B 110, 16491-16498 (2006). [CrossRef] [PubMed]
  16. F. D. Stefani, K. Vasilev, N. Bocchio, F. Gaul, A. Pomozzi, and M. Kreiter, "Photonic mode density effects on single-molecule fluorescence blinking," New J. Phys. 9, 21 (2007). [CrossRef]
  17. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, (2005). [CrossRef] [PubMed]
  18. J. R. Lakowicz, "Plasmonics in biology and plasmon-controlled fluorescence," Plasmonics 1, 5-33 (2006). [CrossRef] [PubMed]
  19. Y. X. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, "Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore's structured emission," Appl. Phys. Lett. 90, (2007).
  20. G. Winter and W. L. Barnes, "Emission of light through thin silver films via near-field coupling to surface plasmon polaritons," Appl. Phys. Lett. 88, (2006). [CrossRef]
  21. M. Thomas, J. J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, "Single-molecule spontaneous emission close to absorbing nanostructures," Appl. Phys. Lett. 85, 3863-3865 (2004). [CrossRef]
  22. J. T. KrugII, E. J. Sanchez, and X. S. Xie, "Fluorescence quenching in tip-enhanced nonlinear optical microscopy," Appl. Phys. Lett. 86, (2005).
  23. F. M. Huang and D. Richards, "Fluorescence enhancement and energy transfer in apertureless scanning near-field optical microscopy," J. Opt. A 8, S234-S238 (2006). [CrossRef]
  24. C. Girard, O. J. F. Martin, and A. Dereux, "Molecular lifetime changes induced by nanometer-scale optical-fields," Phys. Rev. Lett. 75, 3098-3101 (1995). [CrossRef] [PubMed]
  25. L. Novotny, "Single molecule fluorescence in inhomogeneous environments," Appl. Phys. Lett. 69, 3806-3808 (1996). [CrossRef]
  26. A. Rahmani, P. C. Chaumet, and F. de Fornel, "Environment-induced modification of spontaneous emission: Single-molecule near-field probe," Phys. Rev. A 63, 023819 (2001). [CrossRef]
  27. A. Downes, D. Salter, and A. Elfick, "Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy," J. Phys. Chem. B 110, 6692-6698 (2006). [CrossRef] [PubMed]
  28. N. A. Issa and R. Guckenberger, "Optical nanofocusig on tapered metallic waveguides," Plasmonics 2, 31-37 (2007). [CrossRef]
  29. P. M. Whitmore, H. J. Robota, and C. B. Harris, "Mechanisms for electronic-energy transfer between molecules and metal-surfaces - a comparison of silver and nickel," J. Chem. Phys. 77, 1560-1568 (1982). [CrossRef]
  30. P. Avouris and B. N. J. Persson, "Excited-states at metal-surfaces and their nonradiative relaxation," J. Phys. Chem. 88, 837-848 (1984). [CrossRef]
  31. P. B. Johnson and R. W. Chirsty, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  32. D. R. Lide, ed. CRC handbook of chemistry and physics (CRC press, London, 1996).
  33. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997). [CrossRef] [PubMed]
  34. E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, "Gold nanoparticles quench fluorescence by phase induced radiative rate suppression," Nano Lett. 5, 585-589 (2005). [CrossRef] [PubMed]
  35. R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, "Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle," Opt. Commun. 261, 368-375 (2006). [CrossRef]
  36. L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094-4106 (1994). [CrossRef]
  37. A. W. Snyder, and J. D. Love, Optical waveguide theory (Chapman and Hall, New York, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (3743 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited