OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 19 — Sep. 17, 2007
  • pp: 12145–12150

Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers

Christian R. Rosberg, Francis H. Bennet, Dragomir N. Neshev, Per D. Rasmussen, Ole Bang, Wieslaw Krolikowski, Anders Bjarklev, and Yuri S. Kivshar  »View Author Affiliations


Optics Express, Vol. 15, Issue 19, pp. 12145-12150 (2007)
http://dx.doi.org/10.1364/OE.15.012145


View Full Text Article

Enhanced HTML    Acrobat PDF (148 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We suggest and demonstrate a novel platform for the study of tunable nonlinear light propagation in two-dimensional discrete systems, based on photonic crystal fibers filled with high index nonlinear liquids. Using the infiltrated cladding region of a photonic crystal fiber as a nonlinear waveguide array, we experimentally demonstrate highly tunable beam diffraction and thermal self-defocusing, and realize a compact all-optical power limiter based on a tunable nonlinear response.

© 2007 Optical Society of America

OCIS Codes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.5940) Nonlinear optics : Self-action effects

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 27, 2007
Revised Manuscript: August 26, 2007
Manuscript Accepted: August 26, 2007
Published: September 10, 2007

Citation
Christian R. Rosberg, Francis H. Bennet, Dragomir N. Neshev, Per D. Rasmussen, Ole Bang, Wieslaw Krolikowski, Anders Bjarklev, and Yuri S. Kivshar, "Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers," Opt. Express 15, 12145-12150 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-19-12145


Sort:  Year  |  Journal  |  Reset  

References

  1. D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behavior in linear and nonlinear waveguide lattices," Nature 424,817-823 (2003). [CrossRef] [PubMed]
  2. J.W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices," Nature 422,147-150 (2003). [CrossRef] [PubMed]
  3. H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, "Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices," Phys. Rev. Lett. 92123902-4 (2004). [CrossRef] [PubMed]
  4. G. Bartal, O. Cohen, H. Buljan, J. W. Fleischer, O. Manela, and M. Segev, "Brillouin Zone Spectroscopy of Nonlinear Photonic Lattices," Phys. Rev. Lett. 94, 163902-4 (2005). [CrossRef] [PubMed]
  5. R. Fischer, D. Trager, D. N. Neshev, A. A. Sukhorukov, W. Krolikowski, C. Denz, and Yu. S. Kivshar, "Reduced-Symmetry Two-Dimensional Solitons in Photonic Lattices," Phys. Rev. Lett. 96, 023905-4 (2006). [CrossRef] [PubMed]
  6. H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, "Bloch oscillations and Zener tunneling in two-dimensional photonic lattices," Phys. Rev. Lett. 96, 053903-4 (2006). [CrossRef] [PubMed]
  7. C. R. Rosberg, D. N. Neshev, A. A. Sukhorukov, W. Krolikowski, and Y. S. Kivshar, "Observation of nonlinear self-trapping in triangular photonic lattices," Opt. Lett. 32,397-399 (2007). [CrossRef] [PubMed]
  8. T. Pertsch, U. Peschel, F. Lederer, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, "Discrete diffraction in two-dimensional arrays of coupled waveguides in silica," Opt. Lett. 29,468-470 (2004). [CrossRef] [PubMed]
  9. A. Szameit, D. Blömer, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, "Hexagonal waveguide arrays written with fs-laser pulses," Appl. Phys. B. 82,507-512 (2006). [CrossRef]
  10. T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. T¨unnermann, and F. Lederer, "Nonlinearity and disorder in fiber arrays," Phys. Rev Lett. 93,053901-4 (2004). [CrossRef] [PubMed]
  11. U. Röpke, H. Bartelt, S. Unger, K. Schuster, and J. Kobelke, "Two-dimensional high-precision fiber waveguide arrays for coherent light propagation," Opt. Express 15,6894-6899 (2007). [CrossRef] [PubMed]
  12. P. St. J. Russell, "Photonic Crystal Fibers," Science 299,358-362 (2003). [CrossRef] [PubMed]
  13. T.M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibres for evanescent field devices," Electron. Lett. 35,1188-1189 (1999). [CrossRef]
  14. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29,1974-1976 (2004). [CrossRef] [PubMed]
  15. F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14,4135-4140 (2006). [CrossRef] [PubMed]
  16. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9,698-713 (2001). [CrossRef] [PubMed]
  17. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002), 466-468.
  18. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11,2589-2596 (2003). [CrossRef] [PubMed]
  19. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, "Alloptical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12,5857-5871 (2004). [CrossRef] [PubMed]
  20. P. Steinvurzel, B. Kuhlmey, T. White, M. Steel, C. de Sterke, and B. Eggleton, "Long wavelength anti-resonant guidance in high index inclusion microstructured fibers," Opt. Express 12,5424-5433 (2004). [CrossRef] [PubMed]
  21. A. Fuerbach, P. Steinvurzel, J. A. Bolger, A. Nulsen, and B. J. Eggleton, "Nonlinear propagation effects in antiresonant highindex inclusion photonic crystal fibers," Opt. Lett. 30,830-832 (2005). [CrossRef] [PubMed]
  22. S. Lebrun, P. Delaye, R. Frey, and G. Roosen, "High-efficiency single-mode Raman generation in a liquid-filled photonic bandgap fiber," Opt. Lett. 32,337-339 (2007). [CrossRef] [PubMed]
  23. R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Opt. Express 14,6800-6812 (2006). [CrossRef] [PubMed]
  24. F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Meier, "Identification of Bloch-modes in hollow-core photonic crystal fiber cladding," Opt. Express 15,325-338 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited