OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 19 — Sep. 17, 2007
  • pp: 12151–12160

Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning

Peter Zijlstra, James W.M. Chon, and Min Gu  »View Author Affiliations


Optics Express, Vol. 15, Issue 19, pp. 12151-12160 (2007)
http://dx.doi.org/10.1364/OE.15.012151


View Full Text Article

Enhanced HTML    Acrobat PDF (750 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Even though gold nanorod doped dielectrics have been widely used for optical laser writing and patterning there has been no attempt to study the dynamic range of these nanocomposites, let alone exploring ways to improve this property. Here we study the dynamic range of a gold nanorod doped polyvinyl alcohol film for various laser spot sizes at two different laser pulse repetition rates and show that when a high repetition rate laser source is employed the dynamic range of the nanocomposite is severely limited due to accumulative heating inside the focal volume. This problem could be solved by silica-coating the nanorods inside the polymer matrix. This method does not compromise the high repetition rate of the laser writing source and yet retains the attractive flexible properties of the polymer matrix. The silica-coated gold nanorod doped polymer nanocomposite could be an attractive medium for future high-speed, high repetition rate pulsed laser writing and patterning applications.

© 2007 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(210.4770) Optical data storage : Optical recording
(240.6680) Optics at surfaces : Surface plasmons
(350.5340) Other areas of optics : Photothermal effects

ToC Category:
Materials

History
Original Manuscript: July 5, 2007
Revised Manuscript: August 27, 2007
Manuscript Accepted: August 27, 2007
Published: September 10, 2007

Citation
Peter Zijlstra, James W. M. Chon, and Min Gu, "Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning," Opt. Express 15, 12151-12160 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-19-12151


Sort:  Year  |  Journal  |  Reset  

References

  1. M. A. El-Sayed, "Some interesting properties of metals confined in time and nanometer space of different shapes," Acc. Chem. Res. 34, 257-264 (2001). [CrossRef] [PubMed]
  2. O. Wilson, G. J. Wilson, and P. Mulvaney, "Laser writing in polarized silver nanorod films," Adv. Mater. 14, 1000-1004 (2002).
  3. J. Pérez-Juste, B. Rodrîguez-González, P. Mulvaney, and L. M. Liz-Marzán, "Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films," Adv. Funct. Mater. 15, 1065-1071 (2005). [CrossRef]
  4. J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, "Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high density optical data storage," Adv. Funct. Mater. 17, 875-880 (2007). [CrossRef]
  5. J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, "Patterning and encryptation using gold nanoparticles," Int. J. Nanotechnol. 4, 15-225 (2007).
  6. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, "Laser photothermal melting and fragmentation of gold nanorods: Energy and laser pulse-width dependence," J. Phys. Chem. A 103, 1165-1170 (1999). [CrossRef]
  7. S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, "The shape transition of gold nanorods," Langmuir 15, 701-709 (1999). [CrossRef]
  8. B. Nikoobakht, and M. A. El-Sayed, "Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method," Chem. Mater. 15, 1957-1962 (2003). [CrossRef]
  9. S. Link, and M. A. El-Sayed, "Spectroscopic determination of the melting energy of a gold nanorod," J. Chem. Phys. 114, 2362-2368 (2001). [CrossRef]
  10. H. Petrova, J. Pérez-Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, "On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating," Phys. Chem. Chem. Phys. 8, 814-821 (2006). [CrossRef] [PubMed]
  11. F. Cooper, "Heat transfer from a sphere to an infinite medium," Int. J. Heat Mass Transfer, 991-993 (1977). [CrossRef]
  12. H. Inouye, K. Tanaka, I. Tanahashi, and K. Hirao, "Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system," Phys. Rev. B 57, 11334-11340 (1998). [CrossRef]
  13. T. Nishino, S. C. Kani, K. Gotoh, and K. Nakamae, "Melt processing of poly(vinyl alcohol) through blending with sugar pendant polymer," Polymer 43, 2869-2873 (2002). [CrossRef]
  14. A. Bejan, Heat transfer (John Wiley and Sons, 1993).
  15. W.J. Roff, and J.R. Scott, Fibres, films, plastics and rubbers, a handbook of common polymers (Butterworths, London, 1971).
  16. R. C. Weast, and D. R. Lide, CRC handbook of chemistry and physics, 85th ed. (CRC press: Boca Raton, Florida, 2004), pp. 4-82.
  17. L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, "Synthesis of nanosized gold-silica core-shell particles," Langmuir 12, 4329-4335 (1996). [CrossRef]
  18. A. L. Stepanov, D. E. Hole, A. A. Bukharaev, P. D. Townsend, and N. I. Nurgazizov, "Reduction of the size of the implanted silver nanoparticles in float glass during excimer laser annealing," Appl. Surf. Sci. 136, 298-305 (1998). [CrossRef]
  19. The parameters used in the equation are ρsil=2200 kgm-3, ksil=1.3 Wm-1K-1, cp,sil=750 Jkg-1K-1.
  20. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, "Femtosecond transient-absorption dynamics of colloidal gold nanorods: Shape independence of the electron-phonon relaxation time," Phys. Rev. B 61, 6086-6090 (2000). [CrossRef]
  21. M. Hu, X. Wang, G. V. Hartland, V. Salgueiriño-Maceira, and L. M. Liz-Marz’an, "Heat dissipation in gold-silica core-shell nanoparticles," Chem. Phys. Lett. 372, 767-772 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited