OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 19 — Sep. 17, 2007
  • pp: 12161–12166

Self referenced Yb-fiber-laser frequency comb using a dispersion micromanaged tapered holey fiber

Parama Pal, Wayne H. Knox, Ingmar Hartl, and Martin E. Fermann  »View Author Affiliations

Optics Express, Vol. 15, Issue 19, pp. 12161-12166 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (322 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a fully stabilized frequency comb in the 1µm spectral region based on an Yb-fiber oscillator and a cladding pumped chirped pulse Yb-fiber amplifier whose output is spectrally broadened in a dispersion micromanaged holey fiber. The dispersion micromanaged fiber is used to generate efficient, low noise spectral components at 523nm which are heterodyned with the second harmonic of the amplifier output for standard f-to-2f self-referenced carrier envelope offset frequency detection. For comb stabilization we phase-lock this offset frequency and the oscillator repetition frequency simultaneously to an RF reference by feedback controlling the oscillator pump diode current and the driving voltage of an intracavity piezo-electric fiber stretcher respectively.

© 2007 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 6, 2007
Revised Manuscript: September 6, 2007
Manuscript Accepted: September 6, 2007
Published: September 10, 2007

Parama Pal, Wayne H. Knox, Ingmar Hartl, and Martin E. Fermann, "Self referenced Yb-fiber-laser frequency comb using a dispersion micromanaged tapered holey fiber," Opt. Express 15, 12161-12166 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000) [CrossRef] [PubMed]
  2. Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical Frequency Metrology," Nature 416, 233-237 (2002) [CrossRef] [PubMed]
  3. Jun Ye and Steven T. Cundiff eds., Femtosecond Optical Frequency Comb Technology: Principle, Operation and Application (Springer New York, NY 2005)
  4. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jorgensen, "Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared," Opt. Lett. 29,250-252. (2004). [CrossRef] [PubMed]
  5. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, "Frequency metrology with a turnkey all-fiber system," Opt. Lett. 29,2467-2469 (2004). [CrossRef] [PubMed]
  6. H. Hundertmark, D. Wandt, C. Fallnich, N. Haverkamp, and H. R. Telle, "Phase-locked carrier-envelope-offset frequency at 1560 nm," Opt. Express 12,770-775 (2004) [CrossRef] [PubMed]
  7. P. Kubina, P. Adel, F. Adler, G. Grosche, T. W. Hänsch, R. Holzwarth, A. Leitenstorfer, B. Lipphardt, and H. Schnatz, "Long term comparison of two fiber based frequency comb systems," Opt. Express 13, 904-909 (2005). [CrossRef] [PubMed]
  8. H. Schnatz, B. Lipphardt, and G. Grosche, "Frequency Metrology using Fiber-Based fs-Frequency Combs," in Conference on Lasers and Electro-Optics (Optical Society of America, Long Beach, Ca, 2006), paper CTuH1.
  9. W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, M. M. Fejer, "Fiber-laser frequency combs with subhertz relative linewidths," Opt. Lett. 31, 3046-3048 (2006) [CrossRef] [PubMed]
  10. S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, "Standards of time and frequency at the outset of the 21st century," Science 306,1318-1324. (2004). [CrossRef] [PubMed]
  11. I. Hartl, G. Imeshev, L. Dong, G. C. Cho and M. E. Fermann, "Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers," CLEO (2004), Paper CThG1
  12. F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, "131 W 220 fs fiber laser system," Opt. Lett. 30,2754 (2005). [CrossRef] [PubMed]
  13. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999) [CrossRef]
  14. I. Hartl, M. E. Fermann, C. Langrock, M. M. Fejer, J. W. Nicholson, and D. J. DiGiovanni, "Integrated Fiber-Frequency Comb Using a PPLN Waveguide for Spectral Broadening and CEO Phase Detection," in Conference on Lasers and Electro-Optics(Optical Society of America, 2006), paper CtuH5.
  15. F. Lu, and W. H. Knox, "Generation, characterization, and application of broadband coherent, femtosecond visible pulses in dispersion micromanaged holey fibers," J. Opt. Soc. Am. B,  23,1221-1227 (2006) [CrossRef]
  16. Y. Deng, F. Lu, and W. H. Knox, "Fiber-laser-based difference frequency generation scheme for carrier-envelope-offset phase stabilization applications," Opt. Express 13, 4589-4593 (2005) [CrossRef] [PubMed]
  17. A. V. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001) [CrossRef] [PubMed]
  18. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler,"Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," Appl. Phys B 77, 269-277 (2003) [CrossRef]
  19. J. M. Dudley, G. Genty, and S. Coen," Supercontinuum generation in photonic crystal fiber" Rev. Mod. Phys. 78, 1135 (2006) [CrossRef]
  20. T. M. Fortier, J. Ye, S. T. Cundiff, and R. S. Windeler, "Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carier-envelope phase," Opt. Lett 27, 445-447 (2002) [CrossRef]
  21. I. Hartl, M. E. Fermann, T. R. Schibli, D. D. Hudson, M. J. Thorpe, R. J. Jones, and J. Ye, "Passive cavity enhancement of a femtosecond fiber chirped pulse amplification system to 204W average power," Advanced Solid State Photonics (2007), Paper WA4.
  22. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001)
  23. N. R. Newbury, and B. R. Washburn, "Theory of the Frequency Comb Output From a Femtosecond Fiber Laser," IEEE J. Quantum Electron. 41, 1388-1402 (2005). [CrossRef]
  24. N. R. Newbury and W. C. Swann, "Low-noise fiber-laser frequency combs (Invited)," J. Opt. Soc. Am. B 24, 1756-1770 (2007). [CrossRef]
  25. R. Jason Jones, KevinD. Moll, Michael J. Thorpe, and Jun Ye, "Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic generation inside a Femtosecond Enhancement Cavity," Phys. Rev. Lett. 94, 193201 (2005). [CrossRef] [PubMed]
  26. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, "A frequency comb in the extreme ultraviolet," Nature 436, 234-237 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited