OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 19 — Sep. 17, 2007
  • pp: 12174–12182

Figures of merit for 2D surface plasmon waveguides and application to metal stripes

Robin Buckley and Pierre Berini  »View Author Affiliations


Optics Express, Vol. 15, Issue 19, pp. 12174-12182 (2007)
http://dx.doi.org/10.1364/OE.15.012174


View Full Text Article

Enhanced HTML    Acrobat PDF (1199 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three figures of merit, useful as quality measures for 2D surface plasmon waveguides, are discussed and applied to help trade-off mode confinement against attenuation for the symmetric mode propagating along metal stripes. Different stripe geometries are considered, and Au, Ag and Al are compared as the stripe metal over the wavelength range from 200 to 2000 nm. Depending on which figure of merit is used, and on how mode confinement is measured, different preferred designs emerge. For instance, given a mode area, narrow thick stripes are better than wide thin ones, but given a distance from the light line, the opposite is true. Each of the metals analyzed show wavelength regions where their performance is best. The figures of merit are generally applicable and should be useful to help compare, assess and optimize designs in other 2D surface plasmon waveguides or in other absorbing waveguides.

© 2007 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 15, 2007
Revised Manuscript: September 3, 2007
Manuscript Accepted: September 3, 2007
Published: September 10, 2007

Citation
Robin Buckley and Pierre Berini, "Figures of merit for 2D surface plasmon waveguides and application to metal stripes," Opt. Express 15, 12174-12182 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-19-12174


Sort:  Year  |  Journal  |  Reset  

References

  1. M. Bass et al.(Editors), "Properties of Metals," in Handbook of Optics - Vol II, (McGraw-Hill, 2000).
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  3. K. Welford, "Surface plasmon-polaritons and their uses," Opt. Quantum Electron. 23, 1-27 (1991). [CrossRef]
  4. W. L. Barnes, "Surface plasmon-polaritons length scales: a route to sub-wavelength optics," J. Opt. A: Pure Appl. Opt. 8, S87-S93 (2006). [CrossRef]
  5. W. L. Barnes, A. Dereux and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nat. 424, 824-830 (2003). [CrossRef]
  6. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  7. D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981). [CrossRef]
  8. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986). [CrossRef]
  9. P. Berini, "Plasmon-polariton modes guided by a metal film of a finite width," Opt. Lett. 24, 1011-1013 (1999). [CrossRef]
  10. P. Berini, "Plasmon polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000). [CrossRef]
  11. A. Degiron and D. Smith, "Numerical simulations of long-range plasmons", Opt. Express 14,1611-1625 (2006). [CrossRef] [PubMed]
  12. R. Charbonneau, N. Lahoud, G. Mattiussi and P. Berini, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Express 13, 977-984 (2005). [CrossRef] [PubMed]
  13. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, "Passive integrated optics elements based on long-range surface plasmon polaritons," J. Lightwave Technol. 24, 447-494 (2006). [CrossRef]
  14. S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, "Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides," Opt. Express 13, 4674-4682 (2005). [CrossRef] [PubMed]
  15. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen and S. I. Bozhevolnyi, "Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons," J. Lightwave Technol. 23, 413-422 (2005). [CrossRef]
  16. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, "Compact Bragg Gratings for Long-Range Surface Plasmon Polaritons," J. Lightwave Technol. 24, 912-918 (2006). [CrossRef]
  17. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner and F.R. Aussenegg, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79,51-53 (2001). [CrossRef]
  18. J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64, 045411 (2001). [CrossRef]
  19. J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999). [CrossRef]
  20. R. Zia, M. D. Selker, P. B. Catrysse and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004). [CrossRef]
  21. K. R. Welford and J. R. Sambles, "Coupled Surface Plasmons in a Symmetric System", J. Mod. Opt. 35, 1467-1483 (1988). [CrossRef]
  22. J. A. Dionne, L. A. Sweatlock, H. A. Atwater and A. Polman, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization" Phys. Rev. B 73, 035407 (2006). [CrossRef]
  23. I. V. Novikov and A. A. Maradudin, "Channel Polaritons," Phys. Rev. B 66, 035403 (2002). [CrossRef]
  24. D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-10-1069 [CrossRef] [PubMed]
  25. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  26. P. Berini, "Figures of merit for surface plasmon waveguides," Opt. Express 14, 13030-13042 (2006). [CrossRef] [PubMed]
  27. J. Guo and R. Adato, "Extended long range plasmon waves in finite thickness metal film and layered dielectric materials," Opt. Express 14, 12409-12418 (2006). [CrossRef] [PubMed]
  28. A. Degiron, C. Dellagiacoma, J. G. McIlhargey, G. Shvets, O. J. F. Martin, and D. R. Smith, "Simulations of hybrid long-range plasmon modes with application to 90° bends," Opt. Lett. 32, 2354-2356 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-16-2354 [CrossRef] [PubMed]
  29. P. Berini, R. Charbonneau, and N. Lahoud, "Long-Range Surface Plasmons on Ultrathin Membranes," Nano Lett. 7, 1376-1380 (2007). [CrossRef] [PubMed]
  30. C. Chen, P. Berini, D. Feng, S. Tanev, and V. Tzolov, "Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media," Opt. Express 7, 260-272 (2000). [CrossRef] [PubMed]
  31. I. Breukelaar, R. Charbonneau, and P. Berini, "Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides," J. Appl. Phys. 100, 043104 (2006). [CrossRef]
  32. E. D. Palik (Editor), Handbook of Optical Constants of Solids, (Academic Press, Orlando, Florida, 1985).
  33. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, "Characterization of long-range surface-plasmon-polariton waveguides," J. Appl. Phys. 98, 043109 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

Supplementary Material


» Media 1: AVI (2562 KB)     
» Media 2: AVI (2415 KB)     
» Media 3: AVI (1676 KB)     
» Media 4: AVI (1539 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited