OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 19 — Sep. 17, 2007
  • pp: 12356–12361

Fiber-bragg-grating-based dispersion-compensated and gain-flattened raman fiber amplifier

Shien-Kuei Liaw, Liang Dou, and Anshi Xu  »View Author Affiliations


Optics Express, Vol. 15, Issue 19, pp. 12356-12361 (2007)
http://dx.doi.org/10.1364/OE.15.012356


View Full Text Article

Enhanced HTML    Acrobat PDF (370 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we propose a novel signal/pump double-pass Raman fiber amplifier using fiber Brag gratings (FBGs). In order to compensate the dispersion slop mismatch among channels in lightwave system, FBGs embedded in different positions along dispersion compensated fiber are used to control the travel length of each WDM signal. Gain equalization can be achieved by optimizing the reflectivity of each FBG. Maximum output power variation among channels is less than ±0.5 dB after appropriate optimization. Finally, a wavelength division multiplexing (WDM) system using 40-Gb/s x 8 ch non return-to-zero (NRZ) signal transmission in a 100-km transmission fiber is simulated to confirm the system performance. Using proposed dispersion compensation method, it may lead to 2 dB improvement in Q value. Such kind of RFA may find vast applications in WDM system where dispersion management is a crucial issue.

© 2007 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 25, 2007
Revised Manuscript: September 4, 2007
Manuscript Accepted: September 4, 2007
Published: September 13, 2007

Citation
Shien-Kuei Liaw, Liang Dou, and Anshi Xu, "Fiber-bragg-grating-based dispersion-compensated and gain-flattened raman fiber Amplifier," Opt. Express 15, 12356-12361 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-19-12356


Sort:  Year  |  Journal  |  Reset  

References

  1. Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola and A. M. Vengsarkar, "80 nm ultra-wide-band erbium-doped silica fiber amplifier," Electron. Lett. 33, 1965-1967 (1997). [CrossRef]
  2. L. Dou, M. Li, Z. Li, A. Xu, C.-Y. David Lan and S.-K. Liaw, "Improvement in characteristics of a distributed Raman fiber amplifier by using signal-pump double-pass scheme," Opt. Eng. 45, 094201 (2006). [CrossRef]
  3. M. Tang, Y. D. Gong, and P. Shum, "Design of Double-Pass Dispersion-Compensated Raman Amplifiers for Improved Efficiency: Guidelines and Optimizations," J. Lightwave Technol. 22, 1899-1908 (2004). [CrossRef]
  4. V. E. Perlin and H. G. Winful, "Optimal design of flat-gain wide-band fiber Raman amplifiers," J. Lightwave Technol. 20, 250-254 (2002). [CrossRef]
  5. S. Wen and S. Chi, "DCF-based fiber Raman amplifiers with fiber grating reflectors for tailoring accumulated-dispersion spectra," Opt. Commun. 272, 247-251 (2007). [CrossRef]
  6. S.-K. Liaw, K.-P. Ho and S. Chi, "Dynamic power-equalized EDFA modules using strain tunable fiber gratings," IEEE Photon. Technol. Lett. 11, 797-799 (1999) [CrossRef]
  7. M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trépanier, "Gain equalization of EDFAs' with Bragg gratings," Photon. Technol. Lett. 11, 536-538 (1999). [CrossRef]
  8. L. Dou, S.-K. Liaw, M. Li, Y.-T. Lin and A. Xu, "Parameters optimization of high efficiency discrete Raman fiber amplifier by using the coupled steady-state equations," Opt. Commun. 273, 149-152 (2007). [CrossRef]
  9. C. G. Broyden, "A class of methods for solving nonlinear simultaneous equations," Mathematics of Computation 19, 577-593 (1965). [CrossRef]
  10. W. H. Press, Numerical Recipes in C: the art of scientific computing, (Cambridge University Press, New York 1995).
  11. L. G-Nielsen, M. Wandel, P.Kristensen, C. Jørgensen, L.Vilbrad Jørgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, "Dispersion-Compensating Fibers," J. Lightwave Technol. 23, 3566-3579 (2005). [CrossRef]
  12. E. M. Dianov, "Advances in Raman fibers," J. Lightwave Technol. 20, 1457-1462 (2002). [CrossRef]
  13. L Kazovsky, S. Benedetto, and A. Willner, Optical fiber Communication Systems, 1st ed. (Artech House Publishers, Norwood, 1996).
  14. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, New York, 2001).
  15. C. J. Anderson, and J. A. Lyle, "Technique for evaluating system performance using Q in numerical simulations exhibiting intersymbol interference," Electron. Lett. 30, 71-72 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited