OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 19 — Sep. 17, 2007
  • pp: 12368–12373

Optical bistability in subwavelength metallic grating coated by nonlinear material

Changjun Min, Pei Wang, Xiaojin Jiao, Yan Deng, and Hai Ming  »View Author Affiliations

Optics Express, Vol. 15, Issue 19, pp. 12368-12373 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (189 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A developed two-dimensional Finite Difference Time Domain (FDTD) method has been performed to investigate the optical bistability in a subwavelength metallic grating coated by nonlinear material. Different bistability loops have been shown to depend on parameters of the structure. The influences of two key parameters, thickness of nonlinear material and slit width of metallic grating, have been studied in detail. The effect of optical bistability in the structure is explained by Surface Plasmons (SPs) mode and resonant waveguide theory.

© 2007 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Optics at Surfaces

Original Manuscript: July 23, 2007
Revised Manuscript: September 10, 2007
Manuscript Accepted: September 11, 2007
Published: September 13, 2007

Changjun Min, Pei Wang, Xiaojin Jiao, Yan Deng, and Hai Ming, "Optical bistability in subwavelength metallic grating coated by nonlinear material," Opt. Express 15, 12368-12373 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  2. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen,"Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). [CrossRef] [PubMed]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  4. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, F. Martin-Moreno, L. J. Garcia-Vidal, and T. W. Ebbesen,"Beaming light from a subwavelength aperture," Science 297, 220-222 (2002). [CrossRef]
  5. X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, "Fabry-Pérot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits," Appl. Phys. B 80, 301-305 (2005).
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006). [CrossRef] [PubMed]
  7. E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  8. I. I. Smolyaninov, "Quantum Fluctuations of the Refractive Index near the Interface between a metal and a Nonlinear Dielectric," Phys. Rev. Lett. 94, 057403 (2005). [CrossRef] [PubMed]
  9. J. A. Porto, L. Martin-Moreno, and F. J. Garcia-Vidal, "Optical bistability in subwavelength slit apertures containing nonlinear media," Phys. Rev. B 70, 081402 (2004).
  10. G. A. Wurtz, R. Pollard, and A. V. Zayats, "Optical Bistability in Nonlinear Surface-Plasmon Polaritonic Crystals," Phys. Rev. Lett. 97, 057402 (2006). [CrossRef] [PubMed]
  11. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, "Beam manipulating by metallic nano-optic lens containing nonlinear media, " Opt. Express 15, 9541-9546 (2007) [CrossRef] [PubMed]
  12. M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold and W. Freude, "A simple and rigorous verification technique for nonlinear FDTD algorithms by optical parametric four-wave mixing," Microwave Opt. Technol. Lett. 48, 88-91 (2005). [CrossRef]
  13. J. B. Jubkins and R. W. Ziolkowski, "Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings," J. Opt. Soc. Am. A. 12, 1974-1983 (1995). [CrossRef]
  14. P. Harms, R. Mittra, and W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propagat. 42, 1317-1324 (1994). [CrossRef]
  15. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed., (Artech House, Boston, MA 2000).
  16. E. D. Palik, Handbook of Optical Constants of Solids, (Academic Press, London 1985).
  17. M. Born and E. Wolf, Principles of Optics, (Pergamon Press, 1975).
  18. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, Berlin 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited