OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 19 — Sep. 17, 2007
  • pp: 12380–12385

Low-threshold bistability of slow light in photonic-crystal waveguides

Sergei F. Mingaleev, Andrey E. Miroshnichenko, and Yuri S. Kivshar  »View Author Affiliations


Optics Express, Vol. 15, Issue 19, pp. 12380-12385 (2007)
http://dx.doi.org/10.1364/OE.15.012380


View Full Text Article

Enhanced HTML    Acrobat PDF (679 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the resonant transmission of light through a photonic-crystal waveguide side coupled to a Kerr nonlinear cavity, and demonstrate how to design the structure geometry for achieving bistability and all-optical switching at ultralow powers in the slow-light regime. We show that the resonance quality factor in such structures scales inversely proportional to the group velocity of light at the resonant frequency and thus grows indefinitely in the slow-light regime. Accordingly, the power threshold required for all-optical switching in such structures scales as a square of the group velocity, rapidly vanishing in the slow-light regime.

© 2007 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(230.7390) Optical devices : Waveguides, planar
(250.5300) Optoelectronics : Photonic integrated circuits
(260.2030) Physical optics : Dispersion

ToC Category:
Photonic Crystals

History
Original Manuscript: July 5, 2007
Revised Manuscript: September 1, 2007
Manuscript Accepted: September 8, 2007
Published: September 14, 2007

Citation
Sergei F. Mingaleev, Andrey E. Miroshnichenko, and Yuri S. Kivshar, "Low-threshold bistability of slow light in photonic-crystal waveguides," Opt. Express 15, 12380-12385 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-19-12380


Sort:  Year  |  Journal  |  Reset  

References

  1. J.P. Dowling, M. Scalora, M.J. Bloemer, and C.M. Bowden, "The photonic band edge laser: A new aproach to gain enhancement," J. Appl. Phys. 75,1896-1899 (1994). [CrossRef]
  2. M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F.I. Baida, and R. Salut, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," Appl. Phys. Lett. 89,241110 (2006). [CrossRef]
  3. T. Suzuki and P.K.L. Yu, "Emission power of an electric dipole in the photonic band structure of the fcc lattice," J. Opt. Soc. Am. B 12,570-582 (1995).
  4. M. Scalora, J.P. Dowling, C.W. Bowden, and M.J. Bloemer, "Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials," Phys. Rev. Lett. 73,1368-1371 (1994). [CrossRef] [PubMed]
  5. J. Martorell, R. Vilaseca, and R. Corbalan, "Second-harmonic generation in a photonic crystal," Appl. Phys. Lett. 70,702-704 (1997). [CrossRef]
  6. M. Soljacic, S.G. Johnson, S.H. Fan, M. Ibanescu, E. Ippen, and J.D. Joannopoulos, "Photonic-crystal slow-light enhancement of nonlinear phase sensitivity," J. Opt. Soc. Am. B 19,2052-2059 (2002).
  7. Y. Chen and S. Blair, "Nonlinearity enhancement in finite coupled-resonator slow-light waveguides," Opt. Express 12,3353-3366 (2004). [CrossRef] [PubMed]
  8. J.B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis," J. Opt. Soc. Am. B 22,1062-1074 (2005).
  9. F. Xia, L. Sekaric, and Yu. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photon. 1,65-72 (2007). [CrossRef]
  10. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87,253902 (2001). [CrossRef] [PubMed]
  11. R.S. Jacobsen, A.V. Lavrinenko, L.H. Frandsen, C. Peucheret, B. Zsigri, G. Moulin, J.F. Pedersen, and P. I. Borel, "Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides," Opt. Express 13,7861-7871 (2005). [CrossRef] [PubMed]
  12. Y.A. Vlasov, M. O’Boyle, H.F. Hamann, and S.J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438,65-69 (2005). [CrossRef] [PubMed]
  13. H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, and L. Kuipers, "Near-field characterization of low-loss photonic crystal waveguides," Phys. Rev. Lett. 94,073903 (2005). [CrossRef] [PubMed]
  14. S. Assefa, S.J. McNab and Y.A. Vlasov, "Transmission of slow light through photonic crystal waveguide bends," Opt. Lett. 31,745-747 (2006). [CrossRef] [PubMed]
  15. Y.A. Vlasov and S.J. McNab, "Coupling into the slow light mode in slab-type photonic crystal waveguides," Opt. Lett. 31,50-52 (2006). [CrossRef] [PubMed]
  16. J.T. Mok, C.M. de Sterke, I.C.M. Littler, and B.J. Eggleton, "Dispersionless slow light using gap solitons," Nat. Phys. 2,775-780 (2006). [CrossRef]
  17. S.H. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett. 80,908- 910 (2002). [CrossRef]
  18. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431,1081-1084 (2004). [CrossRef] [PubMed]
  19. P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13,801-820 (2005). [CrossRef] [PubMed]
  20. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13,2678-2687 (2005). [CrossRef] [PubMed]
  21. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87,151112 (2005). [CrossRef]
  22. G. Priem, P. Dumon,W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, "Optical bistability and pulsating behaviour in Silicon-On-Insulator ring resonator structures," Opt. Express 13,9623-9528 (2005). [CrossRef] [PubMed]
  23. T. Uesugi, B. Song, T. Asano, and S. Noda, "Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab," Opt. Express 14,377-386 (2006). [CrossRef] [PubMed]
  24. X. Yang, C. Husko, M. Yu, D.-L. Kwong, and C.W. Wong, "Observation of femto-joule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities," arXiv:physics/0703132 (2007).
  25. S. Hughes, L. Ramunno, J.F. Young, and J.E. Sipe, "Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity," Phys. Rev. Lett. 94,033903 (2005). [CrossRef] [PubMed]
  26. S.F. Mingaleev, A.E. Miroshnichenko, Y.S. Kivshar, and K. Busch, "All-optical switching, bistability, and slowlight transmission in photonic crystal waveguide-resonator structures," Phys. Rev. E 74,046603 (2006).
  27. K. Busch, S.F. Mingaleev, A. Garcia-Martin, M. Schillinger, and D. Hermann, "Wannier function approach to photonic crystal circuits," J. Phys.: Condens. Matter. 15,R1233-R1256 (2003). [CrossRef]
  28. S.G. Johnson and J.D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8,173-190 (2001). [CrossRef] [PubMed]
  29. A.E. Miroshnichenko, S.F. Mingaleev, S. Flach, and Yu.S. Kivshar, "Nonlinear Fano resonance and bistable wave transmission," Phys. Rev. E 71,036626 (2005).
  30. M.F. Yanik, S.H. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83,2739-2741 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited