OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 19 — Sep. 17, 2007
  • pp: 12395–12408

Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass

N. Huot, R. Stoian, A. Mermillod-Blondin, C. Mauclair, and E. Audouard  »View Author Affiliations

Optics Express, Vol. 15, Issue 19, pp. 12395-12408 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1844 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a comprehensive analysis of the effects that spherical aberration may have on the process of ultrafast laser photowriting in bulk transparent materials and discuss the consequences for the generated refractive index changes. Practical aspects for a longitudinal photowriting configuration are emphasized. Laser-induced index variation in BK7 optical glass and fused silica (a-SiO2) affected by spherical aberration are characterized experimentally using phase-contrast optical microscopy. Experimental data are matched by analytical equations describing light propagation through dielectric interfaces. Corrective solutions are proposed with a particular focus on the spatial resolution achievable and on the conditions to obtain homogeneously photo-induced waveguides in a longitudinal writing configuration.

© 2007 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.7090) Lasers and laser optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 26, 2007
Revised Manuscript: June 11, 2007
Manuscript Accepted: June 15, 2007
Published: September 14, 2007

N. Huot, R. Stoian, A. Mermillod-Blondin, C. Mauclair, and E. Audouard, "Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass," Opt. Express 15, 12395-12408 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. B. N. Chichkov, C. Momma, S. Nolte, F. von Albenstein and A. Tünnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109 (1996).
  2. S. Valette, R. Le Harzic, N. Huot, E. Audouard and R. Fortunier, "2-D calculations of the thermal effects due to femtosecond laser-metal interaction," Appl. Surf. Sci. 247, 238-242 (2005). [CrossRef]
  3. K Miura, J. Qiu, H. Inouye, T. Mitsuyu and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997). [CrossRef]
  4. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli and C. Smith, "Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses," Opt. Lett. 24, 1311-1313 (1999). [CrossRef]
  5. C. B. Schaffer, A. Brodeur, J. F. Garcia and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 23, 93-95 (2001). [CrossRef]
  6. A. Mermillod-Blondin, I. M. Burakov, R. Stoian, A. Rosenfeld, E. Audouard, N. M. Bulgakova and I. V. Hertel, "Direct observation of femtosecond laser induced modifications in the bulk of fused silica by phase contrast microscopy," J. Laser Micro/Nanoeng. 1, 155-160 (2006). [CrossRef]
  7. S. Juodkasis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko and J. Nishii, "Application of femtosecond laser pulses for microfabrication of transparent media," Appl. Surf. Sci. 197, 705-709 (2002). [CrossRef]
  8. K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen and J.G. Fujimoto, "Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator," Opt Lett. 26, 1516-1518 (2001). [CrossRef]
  9. M. H. Hong, B. Luk’Yanchuk, S. M. Huang, T. S. Ong, L. H. Van, andT. C. Chong, "Femtosecond laser application for high capacity optical data storage," Appl. Phys. A 79, 791-794 (2004).
  10. J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, "Femtosecond pulsed laser direct write production of nano- and microfluidic channels," Appl. Phys. Lett. 88, 183113-183115 (2006). [CrossRef]
  11. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa and K. Hirao, "Fabrication of high-efficiency diffraction gratings in glass," Opt. Lett. 30, 352-354 (2005). [CrossRef] [PubMed]
  12. H. Zhang, S. M. Eaton, J. Li, A. H. Nejadmalayeri and P. R. Herman, "Type II high-strength Bragg grating waveguides photowritten with ultrashort laser pulses," Opt. Express 15, 4182-4191 (2007). [CrossRef] [PubMed]
  13. A. Marcinkevicius, V. Mizeikis, S. Juodkasis, S. Matsuo and H. Misawa, "Effects of refractive index-mismatch on laser microfabrication in silica glass," Appl. Phys. B 76, 257-260 (2003).
  14. D. Liu, Y. Li, R. An, Y. Dou, H. Yang and Q. Gong, "Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing," Appl. Phys. A 84, 257-260 (2006).
  15. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner and P. B. Corkum, "High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations," J. Appl. Phys. 98, 013517 1-5 (2005). [CrossRef]
  16. Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang and Q. Gong, "Effect of spherical aberrations on the propagation of a tightly focused femtosecond laser pulse inside fused silica," Pure Appl. Opt. 7, 655-659 (2005). [CrossRef]
  17. P. Török, P. Vagra and G. Németh, "Analytical solution of the diffraction integrals and interpretation of wavefront distortion when light is focused through a planar interface between materials of mismatched refractive indices," J. Opt. Soc. Am. A 12, 2660-2671 (1995). [CrossRef]
  18. J. S. H. Wiersma, T. D. Visser and P. Török, "Annular focusing through a dielectric interface: scanning and confining the intensity," Pure Appl. Opt. 7, 1237-1248 (1998). [CrossRef]
  19. M. J. Booth and T. Wilson, "Refractive-index-mismatch induced aberrations in single-photon and two-phton microscopy and the used of aberration correction," J. Biomed. Opt. 6, 266-272 (2001). [CrossRef] [PubMed]
  20. M. J. Booth, M. A. A. Neil and T. Wilson, "Aberration correction for confocal imaging in refractive-index-mismatched-media," J. Microsc. 192, 90-98 (1998). [CrossRef]
  21. M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi and S. Miyata, "Predictive aberration correction for multilayer optical data storage," Appl. Phys. Lett. 88, 031109-031111 (2006). [CrossRef]
  22. M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka and S. Kawata, "Active aberration correction for the writing of three-dimensional optical memory device," Appl. Opt. 41, 1374-1379 (2002). [CrossRef] [PubMed]
  23. Z. Wu, H. Jiang, H. Yang and Q. Gong, "The refocusing behaviour of a focused femtosecond laser pulse in fused silica," Pure Appl. Opt. 5, 102-107 (2003). [CrossRef]
  24. A. Maréchal, Imagerie géométrique, aberrations, (Edition de la revue d’optique théorique et instrumentale, Paris 1952).
  25. M. Born and E. Wolf, Principle of Optics, 4th ed. (Pergamon, Oxford 1970).
  26. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, R. Rosenfeld, A. Husakou and I. V. Hertel, "Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses," J. Appl. Phys. 101, 043506 1-7 (2007). [CrossRef]
  27. L. Sudrie, M. Franco, B. Prade and A. Mysyrowicz, "Study of damage in fused silica induced by ultra-short IR laser pulses," Opt. Commun. 191, 333-339 (2001). [CrossRef]
  28. N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte and J. P. Huignard, "100 kHz diffraction-limited femtosecond laser machining," Appl. Phys. B 80, 27-30 (2005).
  29. N. Sanner, N. Huot, E. Audouard, C. Larat, B. Loiseau and J. P. Huignard, "Programmable spatial beam shaping of a 100 kHz amplified femtosecond laser," Opt. Lett. 30, 1479-1481 (2005). [CrossRef] [PubMed]
  30. N. Sanner, N. Huot, E. Audouard, C. Larat and J. P. Huignard, "Direct ultrafast microstructuring of materials using programmable beam shaping," Opt. Laser Eng. 45, 737-741 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited