OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 19 — Sep. 17, 2007
  • pp: 12457–12463

Physical model for the incoherent writing/erasure of cavity solitons in semiconductor optical amplifiers

S. Barbay and R. Kuszelewicz  »View Author Affiliations

Optics Express, Vol. 15, Issue 19, pp. 12457-12463 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (578 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a physical mechanism that explains the recent observations of incoherent writing and erasure of Cavity Solitons in a semiconductor optical amplifier [S. Barbay et al, Opt. Lett. 31, 1504–1506 (2006)]. This mechanism allows to understand the main observations of the experiment. In particular it perfectly explains why writing and erasure are possible as a result of a local perturbation in the carrier density, and why a delay is observed along with the writing process. Numerical simulations in 1D are performed and show very good qualitative agreement with the experimental observations.

© 2007 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(250.5980) Optoelectronics : Semiconductor optical amplifiers

ToC Category:
Nonlinear Optics

Original Manuscript: May 11, 2007
Revised Manuscript: July 31, 2007
Manuscript Accepted: July 31, 2007
Published: September 14, 2007

S. Barbay and R. Kuszelewicz, "Physical model for the incoherent writing/erasure of cavity solitons in semiconductor optical amplifiers," Opt. Express 15, 12457-12463 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. S. Barbay, Y. Ménesguen, X. Hachair, L. Leroy, I. Sagnes, and R. Kuszelewicz, "Incoherent and coherent writing and erasure of cavity solitons in an optically pumped semiconductor amplifier," Opt. Lett. 31, 1504-1506 (2006). [CrossRef] [PubMed]
  2. S. Barland, J. Tredicce, M. Brambilla, L. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödel, M. Miller, and R. Jäger, "Cavity solitons work as pixels in semiconductors," Nature 419, 699-702 (2002). [CrossRef] [PubMed]
  3. X. Hachair, S. Barland, L. Furfaro, M. Giudici, S. Balle, J. R. Tredicce, M. Brambilla, T. Maggipinto, I. M. Perrini, G. Tissoni, and L. Lugiato, "Cavity solitons in broad-area vertical-cavity surface-emitting lasers below threshold," Phys. Rev. A 69, 043817 (2004).
  4. Y. Menesguen, S. Barbay, X. Hachair, L. Leroy, I. Sagnes, and R. Kuszelewicz, "Optical self-organization and cavity solitons in optically pumped semiconductor microresonators," Phys. Rev. A 74, 023818 (2006). [CrossRef]
  5. Y. Tanguy, T. Ackemann, and R. Jager, "Characteristics of bistable localized emission states in broad-area vertical-cavity surface-emitting lasers with frequency-selective feedback," Phys. Rev. A 74, 053824 (2006). [CrossRef]
  6. I. Ganne and G. Slekys and I. Sagnes and R. Kuszelewicz, "Precursor forms of cavity solitons in nonlinear semiconductor microresonators," Phys. Rev. E 66, 066613 (2002). [CrossRef]
  7. F. Pedaci, P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, "Positioning cavity solitons with a phase mask," Appl. Phys. Lett. 89, 221111 (2006). [CrossRef]
  8. X. Hachair, L. Furfaro, J. Javaloyes, M. Giudici, S. Balle, and J. Tredicce, "Cavity-solitons switching in semiconductor microcavities," Phys. Rev. A 72, 013815 (2005). [CrossRef]
  9. M. Brambilla, L.A. Lugiato, F. Prati, L. Spinelli, andW. Firth, "Spatial Soliton Pixels in Semiconductor Devices," Phys. Rev. Lett. 79, 2042-2045 (1997). [CrossRef]
  10. W. J. Firth and A. J. Scroggie, "Optical Bullet Holes: Robust Controllable Localized States of a Nonlinear Cavity," Phys. Rev. Lett. 76, 1623-1626 (1996). [CrossRef] [PubMed]
  11. G. Tissoni and L. Spinelli and L. A. Lugiato and M. Brambilla and I. M. Perrini and T. Maggipinto, "Spatiotemporal dynamics in semiconductor microresonators with thermal effects," Opt. Express 10, 1009-1017 (2002). [PubMed]
  12. L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, "Thermal effects and transverse structures in semiconductor microcavities with population inversion," Phys. Rev. A 66, 023817 (2002). [CrossRef]
  13. A. J. Scroggie, J. M. McSloy, and W. J. Firth, "Self-propelled cavity solitons in semiconductor microcavities," Phys. Rev. E 66, 036607 (2002). [CrossRef]
  14. Y. Ménesguen and R. Kuszelewicz, unpublished.
  15. R. L. Honeycutt, "Stochastic Runge-Kutta algorithms. I. White noise," Phys. Rev. A 45, 600-603 (1992). [CrossRef] [PubMed]
  16. B. Segard, J. Zemmouri, and B. Macke, "Noncritical slowing down in optical bistability," Opt. Commun. 63, 339-343 (1987). [CrossRef]
  17. F. Mitschke, C. Boden, W. Lange, and P. Mandel, "Exploring the dynamics of the unstable branch of bistable systems," Opt. Commun. 71, 385-392 (1989). [CrossRef]
  18. D.N. Maywar, G.P. Agrawal, and Y. Nakano, "All-optical hysteresis control by means of cross-phase modulation in semiconductor optical amplifiers," J. Opt. Soc. Am. B 18, 1003-1013 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited