OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 19 — Sep. 17, 2007
  • pp: 12483–12497

Using ultra-short pulses to determine particle size and density distributions

Chris J. Lee, Peter J. M. van der Slot, and Klaus -J. Boller  »View Author Affiliations

Optics Express, Vol. 15, Issue 19, pp. 12483-12497 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1187 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the time dependent response of strongly scattering media (SSM) to ultra-short pulses of light. A random walk technique is used to model the optical scattering of ultra-short pulses of light propagating through media with random shapes and various packing densities. The pulse spreading was found to be strongly dependent on the average particle size, particle size distribution, and the packing fraction. We also show that the intensity as a function of time-delay can be used to analyze the particle size distribution and packing fraction of an optically thick sample independently of the presence of absorption features. Finally, we propose an all new way to measure the shape of ultra-short pulses that have propagated through a SSM.

© 2007 Optical Society of America

OCIS Codes
(290.1350) Scattering : Backscattering
(290.5850) Scattering : Scattering, particles
(290.7050) Scattering : Turbid media
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:

Original Manuscript: April 4, 2007
Revised Manuscript: May 7, 2007
Manuscript Accepted: May 8, 2007
Published: September 14, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Christopher J. Lee, Peter J. M. van der Slot, and Klaus -J. Boller, "Using ultra-short pulses to determine particle size and density distributions," Opt. Express 15, 12483-12497 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. USFDA, "Process and Analytical Technology (PAT) Initiative," (2006). URL http://www.fda.gov/Cder/OPS/PAT.htm.
  2. M. Blanco and A. Villar, "Polymorphic analysis of a pharmaceutical preparation by NIR spectroscopy," Analyst 125, 2311-2314 (2000). [CrossRef]
  3. M. C. Pasikatan, J. L. Steele, C. K. Spillman, and E. Haque, "Near infrared reflectance spectroscopy for online particle size analysis of powders and ground materials," Journal of Near Infrared Spectroscopy 9, 153-164 (2001).Q1 [CrossRef]
  4. L. S. Taylor and G. Zografi, "The quantitative analysis of crystallinity using FT-Raman spectroscopy," Pharmaceutical Research 15, 755-761 (1998). [CrossRef] [PubMed]
  5. A. D. Patel, P. E. Luner, and M. S. Kemper, "Quantitative analysis of polymorphs in binary and multi-component powder mixtures by near-infrared reflectance spectroscopy," International Journal of Pharmaceutics 206, 63-74 (2000). [CrossRef] [PubMed]
  6. A. C. Jørgensen, J. Rantanen, P. Luukkonen, S. Laine, and J. Yliruusi, "Visualization of a pharmaceutical unit operation: Wet granulation," Anal. Chem. 76, 5331-5338 (2004). [CrossRef] [PubMed]
  7. J. Rantanen, H. Wikstr¨om, R. Turner, and L. Taylor, "Use of in-line near-infrared spectroscopy in combination with chemometrics for improved understanding of pharmaceutical processes," Anal. Chem. 77, 556-563 (2005). [CrossRef] [PubMed]
  8. L. Taylor, H.Wikstr¨om, A. Gift, and J. Rantanen, "Monitoring and manipulating crystal hydrate formation during high shear wet granulation," European Journal of Pharmaceutical Sciences 28, S7 (2006).
  9. C. Hauger, E. Baigar, T. Wilhelm, and W. Zinth, "Time-resolved backscattering of femtosecond pulses from scattering media—an experimental and numerical investigation," Opt. Commun. 131, 351-358 (1996). [CrossRef]
  10. L. Mees, G. Gr’ehan, and G. Gouesbet, "Time-resolved scattering diagrams for a sphere illuminated by plane wave and focused short pulses," Opt. Commun. 194, 59-65 (2001). [CrossRef]
  11. S. A. Schaub, D. R. Alexander, and J. P. Barton, "Theoretical model of the laser imaging of small aerosols: applications to aerosol sizing," Appl. Opt. 30, 4777-4784 (1991). [CrossRef] [PubMed]
  12. A. G. Hoekstra, R. M. P. Doornbos, K. E. I. Deurloo, H. J. Noordmans, and B. G. de Grooth, P. M. A. Sloot "Another face of Lorenz-Mie scattering: monodisperse distributions of spheres produce Lissajous-like patterns," Appl. Opt. 33, 494-500 (1994). [CrossRef] [PubMed]
  13. L. Liu, M. I. Mishchenko, J. W. Hovenier, H. Volten, and O. Mu˜noz, "Scattering matrix of quartz aerosols: comparison and synthesis of laboratory and Lorenz-Mie results," J. Quant. Spectrosc. Radiat. Transfer 79, 911- 920 (2003).Q2Q3 [CrossRef]
  14. M. I. Mishchenko and A. A. Lacis, "morphology-dependent resonances of nearly spherical particles in random orientation," Appl. Opt. 42, 5551-5556 (2003). [CrossRef] [PubMed]
  15. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-261 (2000). [CrossRef]
  16. C. Hauger, E. Baigar, andW. Zinth, "Induced backscattering due to reflecting surfaces in highly scattering media," Opt. Commun. 133, 72-76 (1997). [CrossRef]
  17. W. E. Vargas, "Diffuse radiation intensity propagating through a particulate slab," J. Opt. Soc. Am. A 16, 1362- 1372 (1999). [CrossRef]
  18. R. F. Bonner, R. Nossal, N. S. Havlin, and G. H. Weiss, "Model for photon migration in turbid biological media," J. Opt. Soc. Am. A 4, 423-523 (1987). [CrossRef] [PubMed]
  19. A. H. Gandjbakhche, R. Nossal, and R. F. Bonner, "Scaling relationships for theories of anisotropic random walks applied to tissue optics," Appl. Opt. 32, 504-607 (1993). [CrossRef] [PubMed]
  20. I. M. Vellekoop, P. Lodahl, and A. Lagendijk, "Determination of the diffusion constant using phase-sensitive measurements," Phys. Rev. E 71, 056604 (2005). [CrossRef]
  21. M. Blanco, J. Coello, H. Iturriaga, S. Maspoch, and C. de la Pezuela, "Near-infrared spectroscopy in the pharmaceutical industry. Critical review," Analyst 123, 135R-150R (1998). [CrossRef]
  22. E. Baigar, C. Hauger, and W. Zinth, "Imaging within highly scattering media using time-resolved backscattering of femtosecond pulses," Appl. Phys. B 67, 257-261 (1998). [CrossRef]
  23. C. J. Strachan, C. J. Lee, and T. Rades, "Partial Characterization of different mixtures of solids by measuring the optical nonlinear response," Journal of Pharmaceutical Sciences 93, 733-742 (2004). [CrossRef] [PubMed]
  24. S. Pederson,and H. G. Kristensen, "Change in crystal density of acetylsalicylic acid during compaction," STP Pharma Sciences,  4, 201-206 (1994).Q4
  25. C. C. Sun, "A material-sparing method for simultaneous determination of true density and powder compaction properties—Aspartame as an example," International Journal Pharmaceutics,  326, 94-99, (2006) [CrossRef]
  26. Schott GlassAG , "Optical glass catalog," URL http://www.schott.com/opticsdevices/english/download/index.htm, pp 11 (2006)
  27. C. B. Rawle, C. J. Lee, C. J. Strachan, K. Payne, P. J. Manson, and T. Rades, "Towards characterization and identification of solid state pharmaceutical mixtures through second harmonic generation," Journal of Pharmaceutical Sciences 95, 761-768 (2006) [CrossRef] [PubMed]
  28. D. J. LeCaptain and K. A. Burglund, "The applicability of second harmonic generation for in situ measurement of induction time of selected crystallization systems," J. Cryst. Growth 203, 564-569 (1999) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited