OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 19 — Sep. 17, 2007
  • pp: 12498–12507

Polarization and leakage properties of large-mode-area microstructured-core optical fibers

Ming-Yang Chen  »View Author Affiliations

Optics Express, Vol. 15, Issue 19, pp. 12498-12507 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (2155 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel kind of highly birefringent large-mode-area optical fiber is proposed in this paper. Birefringence in the fiber is realized by the introduction of an anisotropic microstructured core. The microstuctured core is composed of down-doped silica rods embedded in the background of up-doped silica. Numerical investigations demonstrate that high birefringence on the order of 2×10-4 and hexagonal profile mode fields with mode areas larger than 300 µm2 can be achieved in the proposed fiber. The influence of doping levels on the properties of birefringence, confinement losses, and mode-areas of the fiber is also investigated. Based on the design, we also propose a novel kind of single-polarization single-mode optical fiber with a mode area of 725 µm2 and an operating wavelength range as large as 340 nm.

© 2007 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(060.2430) Fiber optics and optical communications : Fibers, single-mode

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 5, 2007
Revised Manuscript: July 29, 2007
Manuscript Accepted: August 20, 2007
Published: September 14, 2007

Ming-Yang Chen, "Polarization and leakage properties of large-mode-area microstructured-core optical fibers," Opt. Express 15, 12498-12507 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. A. Oritigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett. 25, 1325-1327 (2000). [CrossRef]
  2. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-560 (2001).Q1 [CrossRef]
  3. M. J. Steel and R. M. Osgood, "Polarization and dispersive properties of elliptical-hole photonic crystal fibers," J. Lightwave Technol. 19, 495-503 (2001). [CrossRef]
  4. M. Y. Chen, R. J. Yu, and A. P. Zhao, "Highly birefringence rectangular lattice photonic crystal fibers," J. Opt. A: Pure Appl. Opt. 6, 997-1000 (2004). [CrossRef]
  5. M. Y. Chen, R. J. Yu and A. P Zhao, "Confinement losses and optimization in rectangular-lattice photonic crystal fibers," J. Lightwave Technol. 23, 2707-2712 (2005). [CrossRef]
  6. L. Zhang and C. Yang, "Photonic crystal fibers with squeezed hexagonal lattice," Opt. Express 12, 2371-2376 (2004). [CrossRef] [PubMed]
  7. J. Folkenberg, M. Nielsen, N. Mortensen, C. Jakobsen, and H. Simonsen, "Polarization maintaining large mode area photonic crystal fiber," Opt. Express 12, 956-960 (2004). [CrossRef] [PubMed]
  8. T. Schreiber, H. Schultz, O. Schmidt, F. Röser, J. Limpert, and A. Tünnermann, "Stress-induced birefringence in large-mode-area microstructured optical fibers," Opt. Express 13, 3637-3646 (2005). [CrossRef] [PubMed]
  9. W. Belardi, G. Bouwmans, L. Provino, and M. Douay, "Form-induced birefringence in elliptical hollow photonic crystal fiber with large mode area," IEEE J. Quantum Electron. 41, 1558-1564 (2005). [CrossRef]
  10. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, "Microstructured-core optical fiber for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006). [CrossRef] [PubMed]
  11. D. R. Chen and L. F. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett. 19, 185-187 (2007). [CrossRef]
  12. S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, "Defect and lattice structure for air-silica index-guiding holey fibers," Opt. Lett. 31, 164-166 (2006). [CrossRef] [PubMed]
  13. M. Yan, P. Shum, X. Yu, "Heterostructured photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 1438-1440 (2005). [CrossRef]
  14. A. Wang, A. George, J. Liu, and J. Knight, "Highly birefringent lamellar core fiber," Opt. Express 13, 5988-5993 (2005). [CrossRef] [PubMed]
  15. M. Y. Chen, "Polarization maintaining large mode area photonic crystal fibers with solid microstructured cores," J. Opt. A: Pure Appl. Opt.,  9, 868-871 (2007). [CrossRef]
  16. S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Opt. Quantum Electron. 33, 359-371 (2001). [CrossRef]
  17. S. Johnson and J. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  18. H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber," IEEE Photon. Technol. Lett. 16, 182-184 (2004). [CrossRef]
  19. J. R. Folkenberg, M. D. Nielsen, and C. Jakobsen, "Broadband single-polarization photonic crystal fiber," Opt. Lett. 30, 1446-1448 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited