OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 19 — Sep. 17, 2007
  • pp: 12539–12547

Etching of photosensitive chalcogenide glasses:experiments and simulations

Raphi Dror, B. Sfez, Sh. Y. Goldin, and A. Cashingad  »View Author Affiliations


Optics Express, Vol. 15, Issue 19, pp. 12539-12547 (2007)
http://dx.doi.org/10.1364/OE.15.012539


View Full Text Article

Enhanced HTML    Acrobat PDF (272 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a three-dimensional simulation algorithm based on fast marching method that mimics the etching behavior of chalcogenide photoresists, especially for maskless interference lithography. This lithography exposure is characterized by continuous variation of the exposure intensity inside the photoresist, without step like variation. Furthermore, the chalcogenide photoresist has a “gray-scale” behavior, without definite threshold. The resulting etching process is very sensitive to exposure dose and etching time. The optimal relations between these parameters are determined both theoretically and experimentally. A very good agreement between calculation and experimental results is shown, opening the door to complex nanostructures engineering.

© 2007 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(160.2900) Materials : Optical storage materials

ToC Category:
Materials

History
Original Manuscript: July 17, 2007
Revised Manuscript: August 9, 2007
Manuscript Accepted: August 13, 2007
Published: September 14, 2007

Citation
Raphi Dror, B. Sfez, Sh. Y. Goldin, and A. Cashingad, "Etching of photosensitive chalcogenide glasses:experiments and simulations," Opt. Express 15, 12539-12547 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-19-12539


Sort:  Year  |  Journal  |  Reset  

References

  1. K. Shimakawa, A. Kolobov, S. R. Elliott, "Photoinduced effects and metastability in amorphous semiconductors and insulators," Adv. Phys. 44, 475 (1995). [CrossRef]
  2. K. Tanaka, "Sub-Gap Photo-Induced Phenomena in Chalcogenide Glasses," in Photo-Induced Metastability in Amorphous Semiconductors, A.V. Kolobov, ed., (Wiley, Weinheim, 2003) pp 69. [CrossRef]
  3. A. Ozols and K. Shvarts, "Photosensitivity of amorphous semiconductor As-S and As-Se films under CW, nanosecond and picosecond laser irradiation," Cryst. Latt. Def. and Amorph. Mat. 17, 235-239 (1987).Q1
  4. G. Rosenblum, B. G. Sfez, Z. Kotler, V. Lyubin, and M. Klebanov, "Nonlinear optical effects in chalcogenide photoresists," Appl. Phys. Lett. 75, 3249 (1999). [CrossRef]
  5. V. M. Lyubin, A. M. Sedikh, N. N. Smirnova and V. P. Shilo, Microelectronica 18, 523 (1989).Q2
  6. A. Arsh, M. Klebanov, V. Lyubin, L. Shapiro, A. Feigel, M. Veinger, B. Sfez, "Glassy mAs2S3·nAs2Se3 photoresist films for interference laser lithography," Opt. Mater. 26,301-304 (2004). [CrossRef]
  7. M. Vlcek, P. J. S. Ewen and T. Wagner, "High efficiency diffraction gratings in As-S layers," J. Non-Cryst. Solids 227-230, 743 (1998). [CrossRef]
  8. A. V. Stronski, M. Vlcek, A. Sklenar, P. E. Shepeljavi, S. A. Kostyukevich, and T. Wagner, "Application of As40S60-xSex layers for high-efficiency grating production," J. Non-Cryst. Solids 266-269, 973 (2000). [CrossRef]
  9. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, "Direct Laser Writing of Three- Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses," Adv. Mater. 18, 265-269 (2006). [CrossRef]
  10. A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, "Two dimensional photonic band gap pattering in thin chalcogenide glassy films," Thin Solid Films 488,185-188 (2005). [CrossRef]
  11. A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov and V. Lyubin, "Chalcogenide glass-based three-dimensional photonic crystals," Appl. Phys. Lett. 77, 3221 (2000). [CrossRef]
  12. A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov and V. Lyubin, "Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses," Appl. Phys. Lett. 83, 4480 (2003). [CrossRef]
  13. R. C. Rumpf and E. G. Johnson, "Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography," J. Opt. Soc. Am. A 21, 1703-1713 (2004). [CrossRef]
  14. J. A. Sethian, "A fast marching level set method for monotonically advancing fronts," Proc. Nat. Acad. Sci. 93, 1591-1595 (1996). [CrossRef] [PubMed]
  15. J. A. Sethian, Level Set Methods and Fast Marching Methods, (Cambridge Univ. Press, 2nd ed., 1999).
  16. S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, 2003).
  17. J. A. Sethian and D. Adalsteinsson, "Overview of level set methods for etching, deposition, and lithography development," IEEE Transactions on Semiconductor Devices 10, 167-184 (1997).Q3 [CrossRef]
  18. D. Adalsteinsson and J. A. Sethian, "A level set approach to a unified model for etching, deposition, and lithography. I. Algorithms and two-dimensional simulations," J. Comp. Phys. 120, 128-144 (1995).Q4 [CrossRef]
  19. D. Adalsteinsson and J. A. Sethian, "A level set approach to a unified model for etching, deposition, and lithography II: three-dimensional simulations [integrated circuits]," J. Comp. Phys. 122, 348-366 (1995).Q5 [CrossRef]
  20. R. C. Rumpf, P. Srinivasan, and E. G. Johnson, "Modeling the fabrication of nano-optical structures," Proc. SPIE 6110, 611004 (2006). [CrossRef]
  21. R. C. Rumpf and E. G. Johnson, "Comprehensive modeling of near-field nano-patterning," Opt. Express 13, 7198 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (1426 KB)     

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited