OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 2 — Jan. 22, 2007
  • pp: 252–265

Integrating semianalytical and genetic algorithms to retrieve the constituents of water bodies from remote sensing of ocean color

Chih-Hua Chang, Cheng-Chien Liu, and Ching-Gung Wen  »View Author Affiliations


Optics Express, Vol. 15, Issue 2, pp. 252-265 (2007)
http://dx.doi.org/10.1364/OE.15.000252


View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work presents a novel GA-SA approach to retrieve the constituents of water bodies from remote sensing of ocean color. This approach is validated and compared to the existing algorithms using the same synthetic and in-situ datasets compiled by the International Ocean Color Coordinate Group. Comparing to the other methods, the GA-SA approach provides better retrievals for both the inherent optical properties and various water constituents. This novel approach is successfully applied in processing the images taken by MODerate resolution Imaging Spectroradiometer (MODIS) and generates regional maps of chlorophyll-a concentration, total suspended matter, and the absorption coefficient of color dissolved organic matter at 443nm.

© 2007 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.7340) Atmospheric and oceanic optics : Water
(030.5620) Coherence and statistical optics : Radiative transfer
(100.3190) Image processing : Inverse problems

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: October 6, 2006
Revised Manuscript: December 5, 2006
Manuscript Accepted: January 4, 2007
Published: January 22, 2007

Virtual Issues
Vol. 2, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Chih Hua Chang, Cheng-Chien Liu, and Ching Gung Wen, "Integrating semianalytical and genetic algorithms to retrieve the constituents of water bodies from remote sensing of ocean color," Opt. Express 15, 252-265 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-252


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Platt, "Primary production of the ocean water column as a function of surface light intensity: algorithms for remote sensing," Deep-Sea Res. Part I-Oceanogr.Res. Pap. 33, 149-163 (1986). [CrossRef]
  2. H. R. Gordon, O. B. Brown, and M. M. Jacobs, "Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean," Appl. Opt. 14, 417-427 (1975). [CrossRef] [PubMed]
  3. S. Maritorena, D. A. Siegel, and A. R. Peterson, "Optimization of a semianalytical ocean color model for global-scale applications," Appl. Opt. 41, 2705-2714 (2002). [CrossRef] [PubMed]
  4. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, "Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization," Appl. Opt. 38, 3831-3843 (1999). [CrossRef]
  5. K. Y. Kondratyev, D. V. Pozdnyakov, and L. H. Pettersson, "Water quality remote sensing in the visible spectrum," Int. J. Remote Sens. 19, 957-979 (1998). [CrossRef]
  6. S. A. Garver and D. A. Siegel, "Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation.1. Time series from the Sargasso Sea," J. Geoph. Res. 102, 18607-18625 (1997). [CrossRef]
  7. C. C. Liu and R. L. Miller, "A Spectrum Matching Method for Estimating the Inherent Optical Properties from Remote Sensing of Ocean Color," in Ocean Remote Sensing and Imaging II, R. J. Frouin, G. D. Gilbert, and D. Pan, eds. (San Diego, California USA, 2003), pp. 141-152.
  8. R. Doerffer and J. Fischer, "Concentrations of chlorophyll, suspended matter, and gelbstoff in Case-II waters derived from Satellite Coastal Zone Color Scanner data with inverse modeling methods," J. Geoph. Res. 99, 7457-7466 (1994). [CrossRef]
  9. F. E. Hoge and P. E. Lyon, "Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: An analysis of model and radiance measurement errors," J. Geoph. Res. 101, 16631-16648 (1996). [CrossRef]
  10. J. R. V. Zaneveld, "A theoretical derivation of the dependence of the remotely-sensed reflectance of the ocean on the inherent optical-properties," J. Geoph. Res. 100, 13135-13142 (1995). [CrossRef]
  11. H. G. Zhan, Z. P. Lee, P. Shi, C. Q. Chen, and K. L. Carder, "Retrieval of water optical properties for optically deep waters using genetic algorithms," IEEE Trans. Geosci. Remote Sensing 41, 1123-1128 (2003). [CrossRef]
  12. A. Tanaka, M. Kishino, R. Doerffer, H. Schiller, T. Oishi, and T. Kubota, "Development of a neural network algorithm for retrieving concentrations of chlorophyll, suspended matter and yellow substance from radiance data of the ocean color and temperature scanner," J. Oceanogr. 60, 519-530 (2004). [CrossRef]
  13. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, New York, 1989).
  14. IOCCG, "Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications," in Reports of the International Ocean-Colour Coordinating Group, No. 5, Z. P. Lee, ed. (IOCCG, Dartmouth, 2006).
  15. Z. P. Lee, "Models, parameters, and approaches that used to generate wide range of absorption and backscattering spectra," (IOCCG, 2003), http://www.ioccg.org/groups/lee_data.pdf.
  16. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, "Hyperspectral remote sensing for shallow waters. I. A semianalytical model," Appl. Opt. 37, 6329-6338 (1998). [CrossRef]
  17. Z. P. Lee, K. L. Carder, and R. A. Arnone, "Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters," Appl. Opt. 41, 5755-5772 (2002). [CrossRef] [PubMed]
  18. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geoph. Res. 93, 10909-10924 (1988). [CrossRef]
  19. C. C. Liu, "Fast and accurate model of underwater scalar irradiance for stratified Case 2 waters," Opt. Express 14, 1703-1719 (2006). [CrossRef] [PubMed]
  20. R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, Boca Raton, 1995).
  21. A. Morel, "Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters)." J. Geoph. Res. 93, 10749-10768 (1988). [CrossRef]
  22. R. Pope and E. Fry, "Absorption spectrum (380 - 700 nm) of pure waters: II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997). [CrossRef]
  23. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, "Semianalytic MODerate-resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures," J. Geoph. Res. 104, 5403-5421 (1999). [CrossRef]
  24. A. Morel, ed. Optical Properties of Pure Water and Pure Sea Water (Academic, New York, 1974).
  25. Z. P. Lee, "Ocean-colour algorithms." http://www.ioccg.org/groups/OCAG_data.html.
  26. Z. P. Lee, "Results from the IOCCG ocean color algorithm working group." http://seabass.gsfc.nasa.gov/ioccg.html.
  27. H. Schiller and R. Doerffer, "Improved determination of coastal water constituent concentrations from MERIS data," IEEE Trans. Geosci. Remote Sensing 43, 1585-1591 (2005). [CrossRef]
  28. E. Devred, C. Fuentes-Yaco, S. Sathyendranath, C. Caverhill, H. Maass, V. Stuart, T. Platt, and G. White, "A semi-analytic seasonal algorithm to retrieve chlorophyll-a concentration in the Northwest Atlantic Ocean from SeaWiFS data," Indian J. Mar. Sci. 34, 356-367 (2005).
  29. K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B. G. Mitchell, "Reflectance model for quantifying chlorophyll-a in the presence of productivity degradation products," J. Geoph. Res. 96, 20599-20611 (1991). [CrossRef]
  30. A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton - analysis and parameterization," J. Geoph. Res. 100, 13321-13332 (1995). [CrossRef]
  31. H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, a Review; Lecture Notes on Coastal and Estuarine Studies, Volume 4. (Springer Verlag, New York, 1983).
  32. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, New York, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited