OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 2 — Jan. 22, 2007
  • pp: 408–422

Resonant Doppler flow imaging and optical vivisection of retinal blood vessels

Adrian H. Bachmann, Martin L. Villiger, Cedric Blatter, Theo Lasser, and Rainer A. Leitgeb  »View Author Affiliations


Optics Express, Vol. 15, Issue 2, pp. 408-422 (2007)
http://dx.doi.org/10.1364/OE.15.000408


View Full Text Article

Enhanced HTML    Acrobat PDF (1998 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For Fourier domain optical coherence tomography any sample movement during camera integration causes blurring of interference fringes and as such reduction of sensitivity for flow detection. The proposed method overcomes this problem by phase-matching a reference signal to the sample motion. The interference fringes corresponding to flow signal will appear frozen across the detector whereas those of static sample structures will be blurred resulting in enhanced contrast for blood vessels. An electro-optic phase modulator in the reference arm, driven with specific phase cycles locked to the detection frequency, allows not only for qualitative but also for quantitative flow detection already from the relative signal intensities. First applications to extract in-vivo retinal flow and to visualize 3D vascularization, i.e. optical vivisection, are presented.

© 2007 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(110.6880) Imaging systems : Three-dimensional image acquisition
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Imaging Systems

History
Original Manuscript: October 27, 2006
Revised Manuscript: December 21, 2006
Manuscript Accepted: January 2, 2007
Published: January 22, 2007

Virtual Issues
Vol. 2, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Adrian H. Bachmann, Martin L. Villiger, Cedric Blatter, Theo Lasser, and Rainer A. Leitgeb, "Resonant Doppler flow imaging and optical vivisection of retinal blood vessels," Opt. Express 15, 408-422 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-408


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  2. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  3. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004). [CrossRef] [PubMed]
  4. G. Hausler, and M. W. Lindner, "Coherence radar and spectral radar-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  5. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  6. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  7. R. Leitgeb, L. Schmetterer, W. Drexler, F. Berisha, C. Hitzenberger, M. Wojtkowski, T. Bajraszewski, and A. F. Fercher, "Real-time measurement of in-vitro and in-vivo blood flow with Fourier domain optical coherence tomography," in Coherence Domain Optical Methods And Optical Coherence Tomography In Biomedicine Viii(2004), pp. 141-146.
  8. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005). [CrossRef] [PubMed]
  9. U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases," Invest. Ophthalmol. Visual Sci. 46, 3393-3402 (2005). [CrossRef]
  10. E. Gotzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13, 10217-10229 (2005). [CrossRef] [PubMed]
  11. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002). [CrossRef]
  12. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 13,3931-3944 (2005). [CrossRef] [PubMed]
  13. S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, "Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography," Appl. Opt. 45, 1142-1147 (2006). [CrossRef] [PubMed]
  14. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29, 171-173 (2004). [CrossRef] [PubMed]
  15. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003). [CrossRef] [PubMed]
  16. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003). [CrossRef] [PubMed]
  17. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006). [CrossRef] [PubMed]
  18. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000). [CrossRef]
  19. R. A. Leitgeb, W. Drexler, B. Povazay, B. Hermann, H. Sattmann, and A. F. Fercher, "Spectroscopic Fourier Domain Optical Coherence Tomography: Principle, limitations, and applications," in Coherence Domain Optical Methods And Optical Coherence Tomography In Biomedicine Ix(2005), pp. 151-158.
  20. J. Flammer, S. Orgul, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, V. X. Renard, and E. Stefansson, "The impact of ocular blood flow in glaucoma," Prog. Retin. Eye Res. 21, 359-393 (2002). [CrossRef] [PubMed]
  21. L. Schmetterer, and M. Wolzt, "Ocular blood flow and associated functional deviations in diabetic retinopathy," Diabetologia 42, 387-405 (1999). [CrossRef] [PubMed]
  22. C. E. Riva, S. D. Cranstoun, J. E. Grunwald, and B. L. Petrig, "Choroidal blood flow in the foveal region of the human disc," Invest. Ophthalmol. Visual Sci. 35, 4273-4281 (1994).
  23. E. Friedman, "A hemodynamic model of the pathogenesis of age-related macular degeneration," Am. J. Ophthalmol. 124, 677-682 (1997). [PubMed]
  24. C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, "Blood velocity and volumetric flow rate in human retinal vessels," Invest. Ophthalmol. Visual Sci. 26,1124-1132 (1985).
  25. S. Yazdanfar, A. M. Rollins, and J. Izatt, "In vivo imaging of human retinal flow dynamics by color Doppleroptical coherence tomography," Arch. Ophthalmol. 121, 235-239 (2003). [PubMed]
  26. J. W. You, T. C. Chen, M. Mujat, B. H. Park, and J. F. de Boer, "Pulsed illumination spectral-domain optical coherence tomography for human retinal imaging," Opt. Express 14, 6739-6748 (2006). [CrossRef] [PubMed]
  27. J. K. Barton, and S. Stromski, "Flow measurement without phase information in optical coherence tomography images," Opt. Express 13, 5234-5239 (2005). [CrossRef] [PubMed]
  28. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004). [CrossRef] [PubMed]
  29. A. H. Bachmann, R. A. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006). [CrossRef] [PubMed]
  30. R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. Hitzenberger, M. Sticker, and A. Fercher, "Flow Velocity Measurements by Frequency Domain Short Coherence Interferometry," SPIE Proceedings 4619, 16-21 (2002). [CrossRef]
  31. A. N. S. Institute, "American National Standards for Safe Use of Lasers, ANSI Z.136.1," (2000).
  32. P. Thevenaz, U. E. Ruttimann, and M. Unser, "A Pyramid Approach to Subpixel Registration Based on Intensity," IEEE Transaction On Image Processing 7, 27-41 (1998). [CrossRef]
  33. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. T. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (1664 KB)     
» Media 2: MOV (1659 KB)     
» Media 3: MOV (1853 KB)     
» Media 4: MOV (1755 KB)     
» Media 5: MOV (2521 KB)     
» Media 6: MOV (3645 KB)     
» Media 7: MOV (1774 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited