OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 2 — Jan. 22, 2007
  • pp: 508–523

Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks

Michael Scalora, Giuseppe D’Aguanno, Nadia Mattiucci, Mark J. Bloemer, Domenico de Ceglia, Marco Centini, Antonio Mandatori, Concita Sibilia, Neset Akozbek, Mirko G. Cappeddu, Mark Fowler, and Joseph W. Haus  »View Author Affiliations

Optics Express, Vol. 15, Issue 2, pp. 508-523 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (430 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically demonstrate negative refraction of the Poynting vector and sub-wavelength focusing in the visible part of the spectrum using a transparent multilayer, metallo-dielectric photonic band gap structure. Our results reveal that in the wavelength regime of interest evanescent waves are not transmitted by the structure, and that the main underlying physical mechanisms for sub-wavelength focusing are resonance tunneling, field localization, and propagation effects. These structures offer several advantages: tunability and high transmittance (50% or better) across the visible and near IR ranges; large object-image distances, with image planes located beyond the range where the evanescent waves have decayed. From a practical point of view, our findings point to a simpler way to fabricate a material that exhibits negative refraction and maintains high transparency across a broad wavelength range. Transparent metallo-dielectric stacks also provide an opportunity to expand the exploration of wave propagation phenomena in metals, both in the linear and nonlinear regimes.

© 2007 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(310.6860) Thin films : Thin films, optical properties

ToC Category:

Original Manuscript: November 27, 2006
Revised Manuscript: December 22, 2006
Manuscript Accepted: January 2, 2007
Published: January 22, 2007

Michael Scalora, Giuseppe D'Aguanno, Nadia Mattiucci, Mark J. Bloemer, Domenico de Ceglia, Marco Centini, Antonio Mandatori, Concita Sibilia, Neset Akozbek, Mirko G. Cappeddu, Mark Fowler, and Joseph W. Haus, "Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks," Opt. Express 15, 508-523 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [PubMed]
  2. V. G. Veselago, "Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities," Sov. Phys. USPEKHI 10, 509 (1968). [CrossRef]
  3. D. O. S. Melville, and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127 (2005). [CrossRef] [PubMed]
  4. N. Fang, H. Lee, C. Sun, and C. X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534 (2005). [CrossRef] [PubMed]
  5. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075 (1999). [CrossRef]
  6. R. A. Shelby, D. A. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001). [CrossRef] [PubMed]
  7. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401 (2003) [CrossRef] [PubMed]
  8. V. M. Shalaev, W. Cai, U. K. Chettiar, H-K Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356 (2005). [CrossRef]
  9. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative index metamaterial at 780nm wavelength," http://arxiv.org/abs/physics/0607135.
  10. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419 (2003).
  11. K. J. Webb and M. Yang "Subwavelength imaging with a multilayer silver film structure," Opt. Lett. 31, 2130 (2006). [CrossRef] [PubMed]
  12. B. Wood, J. P. Pendry, and D. P. Tsai, "Directed sub-wavelength imaging using metallo-dielectric system," Phys. Rev. B 74, 115116 (2006). [CrossRef]
  13. P. A. Belov and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metallo-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006). [CrossRef]
  14. M. Scalora, M. J. Bloemer, A. S. Manka, S. D. Pethel, J. P. Dowling, and C. M. Bowden, "Transparent, metallo-dielectric one dimensional photonic band gap structures," J. Appl. Phys. 83, 2377 (1998). [CrossRef]
  15. M. J. Bloemer, and M. Scalora, "Transmissive properties of Ag/MgF2 Photonic Band Gaps," Appl. Phys. Lett. 72, 1676-1678 (1998). [CrossRef]
  16. M. Scalora, M. J. Bloemer, and C. M. Bowden, "Laminated photonic band structures with high conductivity and high transparency: Metals under a new light," Opt. Photon. News 10, 23 (1999). [CrossRef]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).
  18. M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, "Accessing the optical limiting properties of Metallo-Dielectric Photonic band gap structures,", J. Appl. Phys. 93, 5013 (2003). [CrossRef]
  19. R. S. Bennink, Y. K. Yoon, R. W. Boyd, and J. E. Sipe, "Accessing the optical non-linearity of metals with metallo-dielectric photonic band gap structures" Opt. Lett. 24, 1416 (1999). [CrossRef]
  20. N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, "Enhanced nonlinear optical response Metallo-dielectric photonic crystals," Phys. Rev. Lett. 93, 123902 (2004). [CrossRef] [PubMed]
  21. M. Scalora, N. Mattiucci, G. D’Aguanno, M. C. Larciprete, and M. J. Bloemer, "Nonlinear pulse propagation in one-dimensional metallo-dielectric multilayer stacks: Ultrawide bandwidth optical limiting," Phys. Rev. E 73, 016603 (2006). [CrossRef]
  22. J. D. Jackson, Classical Electrodynamics, 2nd edition, (Wiley, New York, 1975).
  23. D.R. Smith, D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett. 90, 077405 (2003). [CrossRef] [PubMed]
  24. D. R. Smith, P. Kolinko, D. Schurig, "Negative refraction in indefinite media," J. Opt. Soc. Am. B 21, 1032 (2004). [CrossRef]
  25. R. Wanberg, J. Elser, E. E. Narimanov, and V. A. Podolsky, "Nonmagnetic nanocomposites for optical and infrared negative refractive index media," J. Opt. Soc. Am. B 23, 498 (2006). [CrossRef]
  26. A. A. Govyadinov, and V. A. Podolsky, "Material photonic funnels for subdiffraction light compression and propagation," Phys. Rev. B 73, 155108 (2006). [CrossRef]
  27. S. Feng, and J. M. Elson, "Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms," Opt. Express 14, 216 (2006). [CrossRef] [PubMed]
  28. M. J. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super resolving lens with high transparency for propagating and evanescent waves in the visible range," http://www.arxiv.org/abs/physics/0611162.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited